Типовой расчет №1. Булевы функции.

- 1. Для булевой функции $g(x_1, x_2, x_3)$ из таблицы записать полином Жегалкина, совершенные ДНФ и КНФ.
- 2. Изобразить булеву функцию $g(x_1, x_2, x_3)$ на булевом кубе и найти минимальную ДНФ.
- 3. Найти минимальную ДНФ для функции $f(x_1, x_2, x_3, x_4)$.
- 4. Исследовать на полноту систему $\{f,g\}$. Если система не полна, добавить такую функцию h, чтобы система $\{f,g,h\}$ была полна.
- 5. Реализовать функции схемой из функциональных элементов в базисе $\{\Lambda, V, \overline{}\}$.
- 6. Через функции одного из базисов задачи 4 выразить функции 0, 1, x, \bar{x} , x_1x_2 , $x_1 \lor x_2$, $x_1 \oplus x_2$. Реализовать их в том же базисе схемой из функциональных элементов.
- 7. Построить контактную схему для функции $g(x_1, x_2, x_3)$, представив её в виде ДНФ и КНФ.

No	f(v v v v)	a(x, y, y)
	$f(x_1, x_2, x_3, x_4)$	$g(x_1, x_2, x_3)$
1.	1110 0111 0001 0000	$(x_2 \leftrightarrow x_1 x_3) \to (x_1 \oplus \overline{x_2})$
2.	0000 1111 0010 0011	$(x_1 \leftrightarrow \overline{x_3}x_2) \to (x_1x_2 \oplus x_3)$
3.	1110 0110 0011 1000	$(x_1 \to \overline{x_3}x_2) \lor (x_1x_2 \leftrightarrow x_3)$
4.	0011 1000 1110 0011	$(x_1\overline{x_2}x_3) \oplus (x_2\overline{x_1} \rightarrow x_3)$
5.	0111 1000 1100 0011	$(x_3\overline{x_1} \rightarrow x_2) (x_2 \rightarrow (x_1 \leftrightarrow x_3))$
6.	0011 1000 1100 0011	$(x_2 \to \overline{x_3}x_1) \leftrightarrow (x_1x_2 \oplus x_3)$
7.	0001 1000 0110 0011	$(\overline{x_1}x_3 \to x_2)(x_3 \to \overline{x_1}x_2)$
8.	0000 1100 0111 0111	$(\overline{x_1}x_2x_3 \to x_3) \leftrightarrow \overline{x_1}x_2$
9.	0111 0001 1000 0111	$((x_1 \to x_2) \oplus x_3)(x_1 \leftrightarrow x_2) \oplus x_3$
10.	0001 1000 1110 0111	$(x_1x_2 \to x_3)(x_3 \leftrightarrow (x_1 \oplus x_2))$
11.	1110 0110 0001 1000	$(x_2 \rightarrow x_1 \overline{x_3}) \oplus (x_2 \rightarrow x_1)$
12.	1111 0000 1101 1100	$(\overline{x_1}x_2 \to x_3) \oplus (\overline{x_3} \leftrightarrow x_1)$
13.	0001 1000 1100 0111	$(x_2 \to (x_3 x_2)) \leftrightarrow (x_2x_3 x_2)$
14.	1100 0111 0001 1000	$(x_3 (x_1\leftrightarrow\overline{x_2}))\rightarrow (x_3\oplus(x_1 x_2))$
15.	1110 0011 0001 1100	$((x_1 \oplus \overline{x_2}) x_3) \to (x_3 x_1)$
16.	0111 1000 1101 1111	$(\overline{x_1}x_2x_3 \to x_3) \leftrightarrow \overline{x_1}x_2$
17.	1100 0110 0001 1100	$((x_1 \to x_2) \oplus x_3)(x_1 \leftrightarrow x_2) \oplus x_3$
18.	1110 0110 0011 1000	$(x_1x_2 \to x_3)(x_3 \leftrightarrow (x_1 \oplus x_2))$
19.	1111 0100 0011 0000	$(x_2 \rightarrow x_1 \overline{x_3}) \oplus (x_2 \rightarrow x_1)$
20.	0000 0110 0100 0111	$(\overline{x_1}x_2 \to x_3) \oplus (\overline{x_3} \leftrightarrow x_1)$
21.	0001 1000 0011 0111	$(x_2 \to (x_3 x_2)) \leftrightarrow (x_2x_3 x_2)$
22.	1110 1100 1111 1000	$(x_3 (x_1\leftrightarrow \overline{x_2}))\to (x_3\oplus (x_1 x_2))$

23.	1001 1111 0011 1000	$((x_1 \oplus \overline{x_2}) x_3) \to (x_3 x_1)$
24.	1110 0111 1001 1000	$(x_2 \leftrightarrow x_1 x_3) \to (x_1 \oplus \overline{x_2})$
25.	1000 0110 0111 1000	$(x_1 \leftrightarrow \overline{x_3}x_2) \to (x_1x_2 \oplus x_3)$
26.	1110 0100 0001 1100	$(x_1 \to \overline{x_3}x_2) \lor (x_1x_2 \leftrightarrow x_3)$
27.	1110 0000 1101 1100	$(x_1\overline{x_2}x_3) \oplus (x_2\overline{x_1} \rightarrow x_3)$
28.	1110 0111 0011 0000	$(x_3\overline{x_1} \rightarrow x_2) (x_2 \rightarrow (x_1 \leftrightarrow x_3))$
29.	1100 0011 0001 1100	$(x_2 \to \overline{x_3}x_1) \leftrightarrow (x_1x_2 \oplus x_3)$
30.	0011 1000 1100 1111	$(\overline{x_1}x_3 \to x_2)(x_3 \to \overline{x_1}x_2)$