Задание

Каждому студенту необходимо решить по одной задаче из каждого раздела практикума и прикрепить решение на учебном портале через расписание для проверки преподавателем.

№ варианта выбирать согласно первой букве фамилии:

Таблица выбора вариантов

No	№ задачи практического	№ задачи практического	№ задачи практического
варианта	занятия 1	занятия 2	занятия 3
1	1.1	2.1	3.1
2	1.2	2.2	3.2
3	1.3	2.3	3.3
4	1.4	2.4	3.4
5	1.5	2.5	3.1
6	1.6	2.6	3.2
7	1.5	2.7	3.3
8	1.6	2.8	3.4
9	1.3	2.1	3.4
10	1.4	2.2	3.3
11	1.2	2.3	3.3
12	1.1	2.4	3.2
13	1.3	2.5	3.3

14	1.4	2.6	3.2
15	1.5	2.8	3.4
16	1.6	2.7	3.1
17	1.2	2.1	3.4
18	1.1	2.2	3.3
19	1.4	2.3	3.1
20	1.5	2.4	3.2
21	1.6	2.5	3.3

Практическое занятие №1

Задача 1.1.

Насос подает 120 м 3 /час воды. Манометр на нагнетательном патрубке показывает $P_{\rm H}\!\!=\!\!1,\!8$ ат, а вакууметр на всасывающем патрубке $P_{\rm B}\!\!=\!\!250$ мм рт. столба, расстояние между манометром и точкой присоединения вакууметра 1,5 м. Диаметр нагнетательного патрубка 100 мм, всасывающего 150 мм, коэффициент полезного действия насоса $\eta_{\rm H}\!\!=\!\!0,\!65$. Определить мощность на валу насоса.

Задача 1.2.

Определить теоретическое давление, развиваемое нагнетателем при перемещении воздуха при температуре 15^{0} C, если внутренний диаметр рабочего колеса D_{1} =300 мм, абсолютная скорость при входе c_{1} =4,0 м/c, угол между окружной и абсолютной скоростью при входе α_{1} = 60^{0} , наружный диаметр рабочего колеса D_{2} =500 мм, абсолютная скорость при выходе c_{2} =20,5 м/c, угол между окружной и абсолютной скоростью при выходе α_{2} = 45^{0} , угловая скорость вращения ω = 60 c⁻¹.

Задача 1.3.

Определить действительное давление, развиваемое центробежным нагнетателем при перемещении воздуха с плотностью $\rho = 1,2\kappa e/m^3$, если наружный диаметр рабочего колеса $D_2 = 500$ мм, число оборотов вращения n = 1250 мин $^{-1}$, коэффициент давления $\psi = 0,85$.

Задача 1.4.

Определить удельное число оборотов (быстроходность) вентилятора, если при расходе воздуха $L=3000 \text{ м}^3/\text{час}$ он развивает давление P=600 Па, число оборотов рабочего колеса n=1250 об/мин.

Задача 1.5.

Вентилятор с рабочим колесом $D_{\text{ном}}$, работая на какую то сеть воздуховодов с частотой вращения рабочего колеса n_1 =850 об/мин, обеспечивает при расходе L_1 =5000 M^3 /час полное давление P_1 =400 Π a, потребляемая мощность N_1 =0,653 кВт. Какой будет расход воздуха L_2 и полное давление P_2 , если

а)частота вращения рабочего колеса возрастет до n₂=1450 об/мин;

б) в сети будет работать вентилятор того же типа, но с колесом 1,05 $D_{\text{ном}}$ и с частотой вращения n_2 =1450 об/мин.

В соответствии с условиями гидродинамического подобия формула для пересчета подачи вентилятора при изменении диаметра и числа оборотов рабочего колеса имеет вид:

$$\frac{L'}{L} = (\frac{D'_2}{D_2})^2 \frac{u'_2}{u_2},$$

где u'_2, u_2 -окружная скорость соответственно для измененного числа оборотов и первоначального числа оборотов, определяемая по формуле:

$$u = \frac{\pi Dn}{60},$$

где

n — число оборотов вращения, мин⁻¹,

D', D- измененный и первоначальный диаметр рабочего колеса, м.

Формула для определения давления вентилятора при изменении числа оборотов и диаметра рабочего колеса:

$$\frac{P'}{P} = \frac{\rho'}{\rho} \left(\frac{u'_2}{u_2}\right)^2,$$

формула для пересчета мощности:

$$\frac{N'}{N} = \frac{P'L'}{PL}$$
.

При подстановке в формулы выражения для окружной скорости получим:

$$\frac{L'}{L} = \left(\frac{D'_2}{D_2}\right)^3 \frac{n'}{n},$$

$$\frac{P'}{P} = \frac{\rho'}{\rho} \left(\frac{D'_2 n'}{D_2 n}\right)^2,$$

$$\frac{N'}{N} = \frac{\rho'}{\rho} \left(\frac{D'_2}{D_2}\right)^5 \left(\frac{n'}{n}\right)^3,$$

Задача 1.6.

Рабочее колесо центробежного вентилятора имеет внутренний и наружный диаметр соответственно D_1 =250 мм, D_2 =350 мм. Определить при какой частоте вращения вала рабочее колесо будет создавать теоретическое давление P_1 =800 Па, если относительные скорости на входе и выходе колеса, равные соответственно w_1 =12 м/с, w_2 =18 м/с, составляют с окружными скоростями углы β_1 =120 0 , β_2 =60 0 . Плотность воздуха при стандартных условиях $\rho = 1,2\kappa z/m^3$.

Практическое занятие №2

Характеристики сети и нагнетателя. Работа нагнетателя в сети. Регулирование производительности вентилятора. Работа нагнетателя при изменении плотности перемещаемой среды.

Задача 2.1.

Построить эпюры полного, статического и динамического давления для простой вентиляционной сети, состоящей из всасывающего и нагнетательного воздуховода. Расход воздуха L=850 м³/час, плотность воздуха $\rho=1,2\kappa z/м³$, площади сечения воздуховодов, $f_1=f_2=f_3=0,02$ м², $f_4=0,05$ м². $P_{0Bc}=150$ Па, $P_{0Har}=200$ Па, потери давления в диффузоре после третьего сечения 50 Па.

Задача 2.2.

Построить характеристику вентиляционной сети, если по результатам расчета получены потери давления в сети ΔP =600 Па при расчетном расходе воздуха 15000 м³/час, а уравнение характеристики сети P=100+ kL^2 .

Задача 2.3.

Дана характеристика центробежного насоса при частоте вращения n_1 =1450 об/мин. Построить характеристику этого насоса при n_2 =1650 об/мин. Диаметр рабочего колеса неизменен.

Для насосов рабочая характеристика строится в виде зависимости напора насоса, потребляемой мощности и коэффициента полезного действия от подачи насоса при постоянной частоте вращения. С изменением частоты вращения его характеристика изменяется. Пересчет характеристик центробежного насоса производится с помощью законов пропорциональности, выражающих свойства подобных режимов работы данного насоса при разных частотах вращения:

$$\frac{Q_2}{Q_1} = \frac{n_2}{n_1},$$

$$\frac{H_2}{H_1} = (\frac{n_2}{n_1})^2,$$

$$\frac{N}{N} = (\frac{n_2}{n_1})^3.$$

При определении мощности предполагается, что для подобных режимов значение к.п.д. насоса можно приближенно считать одинаковым.

Точки каждого семейства подобных режимов лежат в координатах Q-H на квадратичной параболе, вершина которой находится в начале координат(парабола подобных режимов).

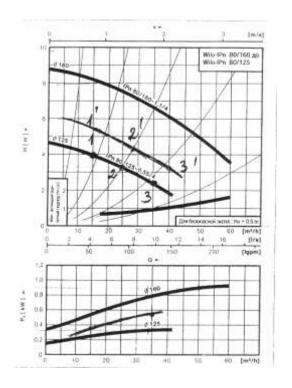
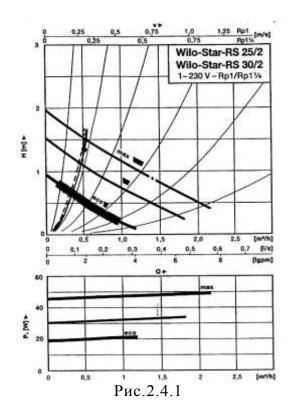



Рис.2.3.1

Задача 2.4.

Подобрать циркуляционный насос для системы отопления, если расчетный расход теплоты на отопление здания 15000 Вт, потери давления в системе 13000 Па, расчетные параметры теплоносителя 95-70 $^0\mathrm{C}.$

Задача 2.5. Подобрать центробежный вентилятор и определить все параметры в рабочей точке

(расход воздуха, давление, к.п.д., мощность, если при расчете сети получено: расчетный расход воздуха 3000 м³/час, давление 250 Па. Для уменьшения расхода воздуха в сети до 2000 м³/час применяется дросселирование. Сравнить мощность и коэффициент полезного действия до и после дросселирования.

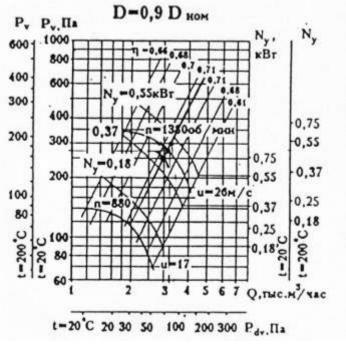
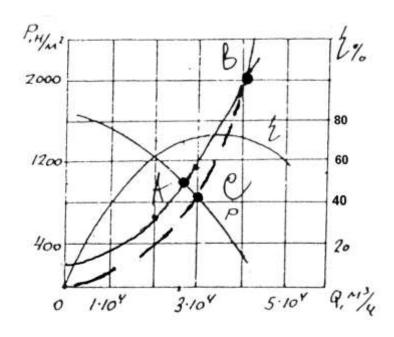



Рис.2.5.1

Задача 2.6.

Для дутья в топке парового котла используется вентилятор, характеристика которого при n=960 об/мин представлена на рисунке. Давление, создаваемое вентилятором P=1000 Па. Для нормальной работы котла в топку следует подавать воздуха в полтора раза больше. Определить частоту вращения вала двигателя и его мощность, обеспечивающую требуемую производительность. Считать, что полный коэффициент полезного действия вентилятора остается неизменным. Характеристика сети $P=200+kL^2$.

Залача 2.7.

Коэффициент к, зависящий от вида примесей принять равным 1,4, к=1.

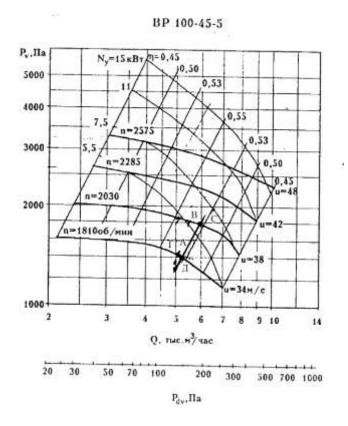
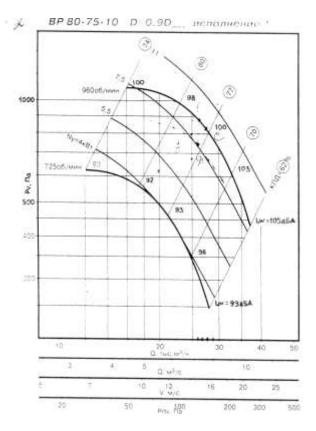


Рис.2.7.1


Задача 2.8.

Воздух в количестве G=30000 кг/час нагревается в воздухонагревателе от $20~^{0}$ С до 80^{0} С. Подобрать вентилятор и определить производительность, давление и мощность на валу вентилятора при установке его перед воздухонагревателем и за ним, если потери давления в системе при стандартных условиях (температура 20^{0} С) 800 Па.

Давление и мощность, потребляемые вентилятором прямо пропорциональны плотности перемещаемой среды. Потери давления в сети также пропорциональны плотности среды. При изменении температуры воздуха изменяется его плотность. Проанализируем работу вентилятора при установке его перед вентилятором и за ним. Если в воздухонагреватель не поступает теплоноситель, то все параметры работы вентилятора: расход воздуха L, давление P, потребляемая мощность одинаковы независимо от места установки воздухонагревателя. При нагревании воздуха в воздухонагревателе плотность его уменьшается, причем, если воздухонагреватель установлен после вентилятора, то изменяется только характеристика сети, тогда как при установке воздухонагревателя до вентилятора изменяется одновременно характеристика вентилятора и вентиляционной сети. При наложении измененной характеристики сети (более пологая), вызванной

изменением температуры, на характеристику вентилятора при установке его перед воздухонагревателем рабочая точка переместится вправо, при этом увеличится расход воздуха и потребляемая мощность, давление при этом снизится.

При наложении измененной характеристики сети на измененную характеристику вентилятора при установке его после воздухонагревателя, расход воздуха сохранится неизменным, но уменьшатся потребляемая мощность и давление.

Практическое занятие №3

Задача 3.1.

По заданной характеристике центробежного насоса Willo-TOP-S 65/1O с минимальным числом оборотов построить характеристику двух совместно работающих соединенных параллельно одинаковых насосов, найти рабочую точку и определить параметры работы одного насоса (подачу, напор, потребляемую мощность) при совместной работе и при отключении одного. Расход воды $Q = 15 \text{ м}^3$ /час. Потери напора в сети вместе с динамическим давлением на выходе 5 м водяного столба.

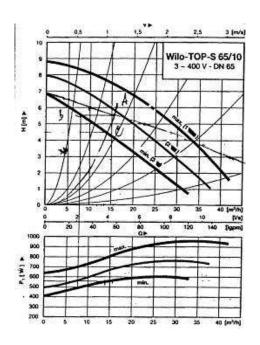


Рис.3.1.1

Задача 3.2.

По заданной характеристике центробежного насоса Willo-TOP-S 65/7 построить характеристику двух совместно работающих соединенных последовательно одинаковых насосов, найти рабочую точку и определить параметры работы одного насоса (подачу, давление, мощность) при совместной работе и при отключении одного. Расход воды $Q=15 \text{ m}^3/\text{час}$, потери напора в сети вместе с динамическим давлением на выходе 5 м водяного столба, дополнительные потери напора в отключенном насосе 0,5 м.

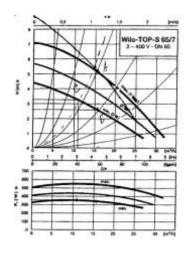
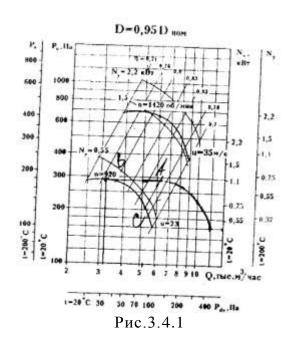


Рис.3.2.1


Задача 3.3.

По заданной характеристике центробежного вентилятора BP 86-77-5 с колесом D=0,9 $D_{\text{ном}}$ и числом оборотов n=1420 об/мин построить характеристику двух совместно работающих соединенных последовательно одинаковых вентиляторов, найти рабочую точку и определить параметры работы одного вентилятора (расход воздуха, давление, коэффициент полезного действия, мощность) при совместной работе и при

отключении одного. Расход воздуха L=5000 м 3 /час, потери давления в сети вместе с динамическим давлением на выходе 1000 Па, дополнительное сопротивление отключенного вентилятора 150 Па.

Задача 3.4.

По заданной характеристике центробежного вентилятора BP 86-77-5 с колесом D=0,95 $D_{\text{ном}}$ и числом оборотов n = 920 об/мин построить характеристику двух совместно работающих соединенных параллельно одинаковых вентиляторов, найти рабочую точку и определить параметры работы одного вентилятора (расход воздуха, давление, коэффициент полезного действия, мощность) при совместной работе и при отключении одного. Расход воздуха L = 6000 M^3 /час, потери давления в сети вместе с динамическим давлением на выходе 275 Π a.

