КОНТРОЛЬНАЯ РАБОТА <u>по химии</u> 2012/13 (весна) учебного года

для всех инженерных специальностей 1-го курса заочной формы обучения (группы С-13, С-1В, УТС-13)

- 1. Каждый студент 1-го курса должен выполнить контрольную работу по курсу «Химия».
- 2. В контрольную работу включено 9 заданий
- 3. Контрольная работа оформляется в электронном виде.
- 4. Срок предоставления до 30 апреля (включительно!)
- 5. Готовую контрольную работу прислать по адресу: Имя прикрепляемого файла должно совпадать с вашей ФИО

Кому: ustinova a.p@mail.ru

Тема: к.р. по химии, ФИО, группа

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ

Формат: А4.

WORD 2003-2007: кейгль 14, «times new roman», поля – левое: 30 мм,

правое 10 мм, верх и низ: 20 мм.

Межстрочный интервал 1,5.

Форматирование: по ширине.

Формулы – Equation или Math Type.

Графика – любой редактор, импортируемый в WORD.

Объём: без ограничений.

ВНИМАНИЕ!

Контрольные работы без имени, без темы, не правильно оформленные проверены не будут!

Критерии оценки

30-32 – оценка «5»

24-29- оценка «4»

16-23 – оценка «3»

<15 - оценка «2»

ОБРАЗЕЦ ОФОРМЛЕНИЯ ТИТУЛЬНОГО ЛИСТА

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ КОЛОМЕНСКИЙ ИНСТИТУТ

КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ и ФИЗИКИ

КОНТРОЛЬНАЯ РАБОТА по курсу «Химия» ВАРИАНТ № 13

Автор: студент группы УТС-13

УТС-13 Петров П.П. Проверил: Устинова А.П.

Дата представления по электронной почте

Задания к контрольной работе по химии

Номер варианта = номеру по списку!

Задание 1. (3 балла). Заполнить столбцы (решение обязательно!)

№	Формула	Macca	Количество	Количество	Объем
варианта	вещества	вещества, г	молей	молекул	(только для
					газов), л
1	СН _{4 (газ)}	1,6			
2	Ba(OH) ₂		5		
3	$\text{Cl}_{2 \text{ (ra3)}}$			$3,01\cdot10^{22}$	
4	CuSO ₄		3		
5	NaNO ₃		0,3		
6	O _{2 (газ)}				1,4
7	KNO ₃	40			
8	СО (газ)				67,2
9	NO (газ)		1,5		
10	Na_2CO_3	318			
11	HNO_3			$2,01\cdot10^{21}$	
12	Н _{2 (газ)}				11,2
13	NH _{3 (газ)}	34			
14	NH ₄ NO ₃			$4,01\cdot10^{21}$	
15	$CO_{2 \text{ (ra3)}}$		0,1		
16	H_2SO_4	24,5			
17	C_2H_2		0,5		
18	H_2SO_3			$5,01\cdot10^{21}$	
19	CaCl ₂		0,25		
20	H ₂ O	18			
21	N _{2 (газ)}				33,6
22	H_3PO_4		4		

Задание 2. (3 балла). Написать реакцию ионного обмена между следующими веществами (полное и сокращенное ионное уравнения)

Вариант 1: BaCl₂ и H₂SO₄

Вариант 2: $Ca(OH)_2$ и K_2CO_3

Вариант 3: AgNO₃ и HCl

Вариант 4: MnCl₂ и KOH

Bapuaнт 5: FeCl₃ и KOH

Вариант 6: BaCO₃ и HNO₃

Вариант 7: CaCl₂ и AgNO₃

Вариант 8: $CuCl_2$ и K_2S

Bариант 9: Na₂SiO₃ и HCl

Bapuaнт 10: ZnCl₂ и H₂S

Bариант 11: PbCl₂ и NaI

Bapuaнт 12: MgCl₂ и Na₂CO₃

Вариант 13: BaCl₂ и Na₃PO₄

Bариант 14: NaOH и MgCl₂

Bapuaнт 15: BaCl₂ и H₂SO₄

Вариант 16: Na₂SO₃ и CaBr₂

Вариант 17: BaCO₃ и HNO₃

Вариант 18: Ca(OH)₂ и K₂CO₃

Вариант 19: AgNO₃ и HCl

Вариант 20: $Pb_3(PO_4)_2$ и Na_2SO_4

Вариант 21: MnCl₂ и КОН

Вариант 22: FeCl₃ и КОН

Задание 3. (4 балла). Написать характеристику элемента (символ, название, порядковый номер, число протонов, нейтронов, электронов, относительная атомная масса, металл или неметалл), электронную и электроннографическую формулу

Вариант 1: В

Вариант 2: Са

Вариант 3: С1

Вариант 4: К

Вариант 5: N

Вариант 6: С

Вариант 7: О

Вариант 8: S

Вариант 9: Na

Вариант 10: F

Вариант 11: Si

Вариант 12: Mg

Вариант 13: А1

Вариант 14: Р

Вариант 15: Ва

Вариант 16: Br

Вариант 17: Ne

Вариант 18: Rb

Вариант 19: Ве

Вариант 20: Sr

Вариант 21: Sn

Вариант 22: І

Задание 4. (5 баллов). Определить скорость, зная исходные данные (по правилу Вант-Гоффа или закону действующих масс)

№ варианта	Реакция	Изменение t °C	Температурный коэффициент	Константа скорости	Концентрации исходных	V х.р., моль/л·с
1	A+B=D	Увелич. на 40°C	3		веществ, моль/л	

	А+2D-2Д	_	_	2	$[A]^{-2}, [D]^{-3}$	
3	H ₂ +Cl ₂ =2HCl	Уменьшение На 30°C	2	-	-	
4	2Fe+O ₂ =2FeO	Увелич. на 30°C	2	-	-	
5	А+В=Д	-	-	5	[A]=1, [B]=3	
6	2А+2В=Д	-	-	2	[A]=2, [B]=1	
7	N ₂ +3H ₂ =2NH ₃	Увелич. на 20°C	4	-	-	
8	2А+В=2Д	-	-	2	[A]=2, [B]=4	
9	2Fe+O ₂ =2FeO	-	-	4	[Fe]=0,5, [O ₂]=1	
10	2А+2В=Д	Уменьшение На 30°C	2	-	-	
11	2C+D=A+2B	-	-	2,5	[C]=1, [D]=7,5	
12	H ₂ +Cl ₂ =2HCl	Увелич. на 30°C	2,5	-	-	
13	2А+В=2Д	-	-	1,5	[A]=2, [B]=4,5	
14	$N_2 + 3H_2 = 2NH_3$	-	-	1	[N ₂]=5,[H ₂]=0,7	
15	2C+D=A+2B	Уменьшение На 10°C	2	1	-	
16	2Fe+O ₂ =2FeO	-	-	2	$[Fe]=1,5, [O_2]=2$	
17	2А+В=2Д	Увелич. на 20°C	2	-	-	
18	А+2В=2Д	_	-	3	[A]=1, [B]=3	
19	N ₂ +3H ₂ =2NH ₃	Увелич. на 10°C	4	-	-	
20	2C+D=A+2B	Уменьшение На 30°C	3	-	-	
21	3D=2B+A	-	-	4	[D]=2	
22	H ₂ +Cl ₂ =2HCl	-	-	2	[H ₂]=1,5,[Cl ₂]=2	

[A]=2, [B]=3

Задание 5. (3 балла) – общее задание для всех

А+2В=2Л

Одним из способов промышленного получения водорода является взаимодействие метана с водяным паром:

$$CH_4(\Gamma) + H_2O(\Gamma) = CO(\Gamma) + 3H_2.$$

Рассчитайте ΔH° , ΔS° и ΔG° этой реакции и решите, будет ли она протекать при стандартных условиях.

Задание 6. (3 балла) – общее задание для всех

Применяя принцип Ле Шателье, укажите, в каком направлении произойдет смещение равновесия системы:

 $CO(\Gamma) + H_2O(\kappa) \leftrightarrows CO_2(\Gamma) + H_2(\Gamma)\Delta H > 0$

если: а) повысить давление,

- б) повысить температуру (температурный коэффициент прямой и обратной реакций одинаковый),
 - в) увеличить концентрацию оксида углерода (II)?

Задание 7. (4 балла). Напишите уравнения реакций, которые необходимо провести для осуществления следующих превращений:

$$Fe \rightarrow FeSO_4 \rightarrow Fe(OH)_2 \rightarrow Fe(OH)_3 \rightarrow K_2FeO_4$$

К окислительно-восстановительным реакциям составьте электронные уравнения

Задание 8. (4 балла).

Вариант 1: Гомологический ряд ацетиленовых углеродов, их химические свойства. Напишите уравнение реакций получения ацетилена, получения из ацетилена бензола и ацетальдегида.

Вариант 2: Гомологический ряд алканов, их химические свойства. Напишите уравнение реакций получения метана.

Вариант 3: Гомологический ряд ароматических углеродов, их химические свойства. Напишите уравнение реакций получения бензола

Вариант 4: Гомологический ряд алкенов, их химические свойства. Напишите уравнение реакций получения этилена.

Вариант 5: Гомологический ряд алкадиенов, их химические свойства. Напишите применение каучука

Вариант 6: Гомологический ряд спиртов, их химические свойства. Напишите уравнение реакций получения этанола.

Вариант 7: Гомологический ряд альдегидов, их химические свойства. Напишите формулы альдегидов имеющих запах

Вариант 8: Гомологический ряд кетонов, их химические свойства. Напишите уравнение реакций получения ацетона.

Вариант 9: Гомологический ряд карбоновых кислот, их химические свойства. Напишите уравнение реакций получения жира.

Вариант 10: Гомологический ряд простых эфиров, их химические свойства.

Применение.

Вариант 11: Гомологический ряд сложных эфиров, их химические свойства. Применение.

Вариант 12: Важнейшие аминокислоты. Строение. Образование пептидной связи.

Вариант 13: Белки. Функции

Вариант 14: Белки. Первичная структура белков.

Вариант 15: Белки. Вторичная структура белков.

Вариант 16: Белки. Третичная и четвертичная структура белков.

Вариант 17: Полимеры. Классификация

Вариант 18: Важнейшие полимеры и их применение

Вариант 19: Полимеры. Получение.

Вариант 20: Нуклеиновые кислоты. Функции.

Вариант 21: Углеводы. Функции. Глюкоза (строение, свойства)

Вариант 22: Углеводы. Функции. Крахмал (строение, свойства)

Задание 9. (Збалла). Напишите выражение для константы равновесия следующих систем:

Вариант 1: $N_2+3H_2\leftrightarrow 2NH_3$

Вариант 2: $CH_4+CO_2 \leftrightarrow 2CO+2H_2$

Вариант 3: $CH_4+Cl_2 \leftrightarrow CH_3Cl+HCl$

Вариант 4: $2NH_3 \leftrightarrow N_2 + 3H_2$

Вариант 5: $2HBr \leftrightarrow H_2 + Br_2$

Вариант 6: $2SO_2+O_2 \leftrightarrow 2SO_3$

Вариант 7: $H_2O+CO \leftrightarrow H_2+CO_2$

Вариант 8: $2H_2+O_2 \leftrightarrow 2H_2O$

Вариант 9: $CO+Cl_2 \leftrightarrow COCl_2$

Вариант 10: 2NO+Cl2↔2NOCl

Вариант 11: 2HCl \leftrightarrow H₂+Cl₂

Вариант 12: $PCl_5 \leftrightarrow PCl_3 + Cl_2$

Вариант 13: $H_2+I_2\leftrightarrow 2HI$

Вариант 14: N_2 +3 H_2 \leftrightarrow 2 NH_3

Вариант 15: СН₄+СО₂↔2СО+2Н₂

Вариант 16: $CH_4+Cl_2\leftrightarrow CH_3Cl+HCl$

Вариант 4: $2NH_3 \leftrightarrow N_2 + 3H_2$

Вариант 17: 2HBr \leftrightarrow H₂+Br₂

Вариант 18: $2SO_2+O_2 \leftrightarrow 2SO_3$

Вариант 19: CO+Cl₂ \leftrightarrow COCl₂

Вариант 20: 2NO+Cl2↔2NOCl

Вариант 21: 2HCl \leftrightarrow H₂+Cl₂

Вариант 22: $PCl_5 \leftrightarrow PCl_3 + Cl_2$