МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ

И.В. Баранов, В.А. Самолетов, В.Л. Частый

ФИЗИКА КОНТРОЛЬНАЯ РАБОТА № 1

Учебно-методическое пособие

Санкт-Петербург 2012 **Баранов И.В., Самолетов В.А., Частый В.Л.** Физика. Контрольная работа № 1: Учеб.-метод. пособие. — СПб.: НИУ ИТМО; ИХиБТ, 2012. — 28 с.

Приведены 30 вариантов контрольной работы по разделу «Механика» дисциплины «Физика» и предложены 70 задач для ее выполнения. Каждый вариант состоит из семи задач.

Контрольные задания предназначены для самостоятельной работы студентов бакалавриата направлений: 140700; 141200; 151000; 220700; 240700; 241000; 260100; 260200 заочной формы обучения.

Рецензент: доктор техн. наук, проф. О.В. Волкова

Рекомендовано к печати редакционно-издательским советом Института холода и биотехнологий

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, присвоена категория «Национальный исследовательский которым университет». Министерством образования науки Российской Федерации была утверждена программа его развития на 2009–2018 годы. В 2011 году Университет получил наименование «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики».

© Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, 2012

© Баранов И.В., Самолетов В.А., Частый В.Л., 2012

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ № 1

Вариант контрольной работы выбирается из таблицы по двум последним цифрам номера зачетной книжки (шифра).

Например, номер зачетной книжки 113859. Последние две цифры номера 5 и 9. По ним выбираем в таблице вариант со следующими задачами: 109; 111; 123; 135; 147; 159; 161.

Номер варианта								
Предпоследняя	Последняя	11						
цифра номера	цифра номера	Номер задачи						
зачетной книжки	зачетной книжки							
	1	101	112	123	134	145	156	167
	2	102	113	124	135	146	157	168
	3	103	114	125	136	147	158	169
	4	104	115	126	137	148	159	170
0, 1, 2, 3	5	105	116	127	138	149	160	161
	6	106	117	128	139	150	151	162
	7	107	118	129	140	141	152	163
	8	108	119	130	131	142	153	164
	9	109	120	121	132	143	154	165
	0	110	111	122	133	144	155	166
	1	101	113	125	137	149	151	163
4, 5, 6	2	102	114	126	138	150	152	164
	2 3	103	115	127	139	141	153	165
	4	104	116	128	140	142	154	166
	5	105	117	129	131	143	155	167
	6	106	118	130	132	144	156	168
	7	107	119	121	133	145	157	169
	8	108	120	122	134	146	158	170
	9	109	111	123	135	147	159	161
	0	110	112	124	136	148	160	162
	1	101	114	127	140	143	156	169
7, 8, 9	2	102	115	128	131	144	157	170
	2 3 4	103	116	129	132	145	158	161
	4	104	117	130	133	146	159	162
	5	105	118	121	134	147	160	163
	6	106	119	122	135	148	151	164
	7	107	120	123	136	149	152	165
	8	108	111	124	137	150	153	166
	9	109	112	125	138	141	154	167
	0	110	113	126	139	142	155	168

ЗАДАЧИ К КОНТРОЛЬНОЙ РАБОТЕ № 1

Кинематика материальной точки

- **101.** Точка движется по окружности радиусом R=1,20 м. Уравнение движения точки имеет вид: $\varphi=At+Bt^3$, где A=0,500 рад/с, B=2,50 рад/с 3 . Определить тангенциальное a_{τ} , нормальное a_n и полное a ускорение точки в момент времени t=0,954 с.
- **102.** Тело брошено со скоростью $v_0 = 50,0$ м/с под углом $\alpha = 40,0^{\circ}$ к горизонту. Пренебрегая сопротивлением воздуха, определить для момента времени t = 5,40 с после начала движения нормальное a_n и тангенциальное a_{τ} ускорение.
- **103.** Определить скорость v и полное ускорение a точки в момент времени t=1,38 с, если она движется по окружности радиусом R=1,76 м согласно уравнению $\phi=At+Bt^3$, где A=6,47 рад/с, B=-1,84 рад/с 3 .
- **104.** Тело брошено горизонтально со скоростью $v_0 = 8,71$ м/с с башни, высота которой H = 35,0 м. Определить радиус кривизны траектории R в момент времени t = 0,50 с после начала движения и дальность полета тела S в момент его падения на Землю.
- **105.** Точка движется по окружности с постоянным угловым ускорением $\varepsilon = 3,00$ рад/с. Определить радиус окружности, если к концу первой секунды после начала движения полное ускорение точки a = 7,50 м/с.
- **106.** Начальная скорость камня, брошенного под углом к горизонту, $v_0 = 8,00$ м/с. Через $t_1 = 0,500$ с после начала движения его скорость стала равна $v_1 = 6,00$ м/с. Под каким углом α к горизонту брошен камень?
- **107.** Точка движется по окружности радиусом R = 8,00 м. В момент времени t_1 нормальное ускорение точки $a_n = 4,00$ м/с², а вектор полного ускорения \vec{a} образует с вектором нормального ускорения \vec{a}_n угол $\alpha = 50,0^\circ$. Найти скорость v и тангенциальное ускорение a_τ точки в этот момент времени t_1 .

- **108.** Пуля выпущена с начальной скоростью $v_0 = 158$ м/с под углом $\alpha = 40.0^\circ$ к горизонту. Определить наибольшую высоту подъема H и дальность полета S пули. Сопротивлением воздуха пренебречь.
- **109.** Диск, радиус которого равен 30,0 см, вращается так, что точка, лежащая на его краю, имеет линейную скорость, меняющуюся по закону $\mathbf{v} = At^2 + Bt^3$, где $A = 4,00 \text{ м/c}^3$, $B = 12,0 \text{ м/c}^4$. Определить величину полного ускорения \vec{a} данной точки и угловое ускорение ε диска при t = 0,450 с.
- **110.** Камень, брошенный горизонтально с высоты h = 2,00 м над Землей, упал на расстоянии $\ell = 7,00$ м от места бросания (считая по горизонтали). Найти начальную v_0 и конечную v скорости камня.

Динамика материальной точки

- **111.** Брусок массой m=50,0 кг начинает двигаться по горизонтальной плоскости под действием горизонтальной силы F=25,0 Н. Найти коэффициент трения скольжения μ , если через время t=5,00 с после начала движения модуль скорости бруска v=0,500 м/с.
- **112.** К телу массой m = 40,0 кг, скользящему по горизонтальной плоскости, прикладывается сила F = 60,0 Н, направленная вниз под углом $\alpha = 30,0^{\circ}$ к плоскости. Коэффициент трения скольжения $\mu = 0,100$. Определить модуль ускорения a, с которым будет двигаться тело.
- **113.** Груз массой m = 45,0 кг перемещается по горизонтальной плоскости равномерно под действием силы F = 29,4 H, направленной вверх под углом $\alpha = 40,0^{\circ}$ к плоскости. Определить коэффициент трения скольжения μ .
- **114.** Два груза массой $m_1 = 0,980$ кг и $m_2 = 0,200$ кг связаны невесомой и нерастяжимой нитью и лежат на гладком столе. К левому грузу m_1 приложена сила $F_1 = 5,30$ Н, направленная в сторону от правого груза m_2 . К правому грузу в противоположном направлении приложена сила $F_2 = 2,90$ Н. Найти ускорение и силу натяжения нити T при движении грузов (трением пренебречь).
- **115.** К телу массой m = 16,5 кг приложена сила F = 65,4 Н. Плоскость составляет с горизонтом угол $\alpha = 15,0^{\circ}$. Сила, приложен-

- ная к телу, направлена вверх вдоль наклонной плоскости. С каким ускорением a и в какую сторону будет двигаться тело, если коэффициент трения скольжения $\mu = 0,100$?
- **116.** Локомотив массой m = 50,0 т тянет за собой два вагона массой $m_1 = 40,0$ т каждый с постоянной скоростью \boldsymbol{v} . Найти силу тяги F двигателя локомотива и силы F_1 , F_2 в точках сцепления, действующие на каждый вагон, если коэффициент трения скольжения $\mu = 50,0 \cdot 10^{-3}$.
- **117.** Тело массой m = 10,0 кг поднимают с силой F = 150 Н по наклонной плоскости, составляющей угол $\alpha = 20,0^{\circ}$ с горизонтом. Сила, приложенная к телу, направлена горизонтально. С каким ускорением a будет двигаться тело, если коэффициент трения скольжения $\mu = 0,300$?
- **118.** Автомобиль движется прямолинейно вдоль оси X так, что уравнение его движения имеет вид $x = 2,00 \ t + 0,600 \ t^2$ м, где t -время, с. Найти силу тяги F двигателя автомобиля, если коэффициент трения скольжения $\mu = 0,100$, а масса автомобиля m = 3,00 т.
- **119.** Тело массой m = 10,0 кг поднимают с силой F = 139 Н по наклонной плоскости, составляющей угол $\alpha = 40,0^{\circ}$ с горизонтом. Эта сила приложена к телу под углом $\beta = 60,0^{\circ}$ относительно горизонта и направлена вверх. С каким ускорением α будет двигаться тело, если коэффициент трения скольжения $\mu = 0,300$?
- **120.** Тело соскальзывает по гладкой наклонной плоскости $(\mu = 0)$ длиной $\ell = 10,0$ м за время t = 1,60 с. Какой угол α в градусах составляет данная плоскость с горизонтом?

Соударение тел

- **121.** При горизонтальном полете со скоростью v = 250 м/с снаряд массой m = 8,00 кг разорвался на две части. Большая часть массой $m_1 = 6,00$ кг получила скорость $u_1 = 400$ м/с в направлении полета снаряда. Определить модуль и направление скорости \vec{u}_2 меньшей части снаряда.
- **122.** Шар массой $m_1 = 1,00$ кг движется со скоростью $v_1 = 2,00$ м/с и сталкивается с шаром массой $m_2 = 2,00$ кг, движущимся ему навстречу со скоростью $v_2 = 3,00$ м/с. Каковы скорости u_1

- и u_2 шаров после удара? Удар считать абсолютно упругим прямым центральным.
- **123.** Снаряд, летевший со скоростью v = 400 м/с, разорвался на два осколка. Меньший осколок, масса которого составляет 40 % от массы снаряда, полетел в противоположном направлении со скоростью $u_1 = 150$ м/с. Определить скорость u_2 большего осколка.
- **124.** Шар массой $m_1 = 5{,}00$ кг движется со скоростью $v_1 = 1{,}00$ м/с и сталкивается с покоящимся шаром массой $m_2 = 2{,}00$ кг. Найти скорости u_1 и u_2 шаров после удара. Удар абсолютно упругий прямой центральный.
- **125.** В деревянный шар массой $m_1 = 8,00$ кг, подвешенный на нити длиной $\ell = 1,80$ м, попадает горизонтально летящая пуля массой $m_2 = 4,00$ г. С какой скоростью летела пуля, если нить с шаром и застрявшей в нем пулей отклонилась от вертикали на угол $\alpha = 3,00^{\circ}$?
- **126.** Шар массой $m_1 = 1,00$ кг движется со скоростью $v_1 = 3,50$ м/с, догоняет шар массой $m_2 = 2,00$ кг, движущийся в том же направлении со скоростью $v_2 = 1,00$ м/с, и сталкивается с ним. Каковы скорости u_1 и u_2 шаров после удара? Удар считать абсолютно упругим прямым центральным.
- **127.** Шар массой $m_1 = 3{,}00$ кг движется со скоростью $v_1 = 2{,}00$ м/с и сталкивается с покоящимся шаром массой $m_2 = 5{,}00$ кг. Какая работа A будет совершена при деформации шаров? Удар считать абсолютно неупругим прямым центральным.
- **128.** Движущийся шар массой m_1 ударяется о неподвижный шар массой m_2 . Каким должно быть отношение масс m_1/m_2 , чтобы при центральном абсолютно упругом ударе скорость первого шара уменьшилась в 1,50 раза и оба шара двигались в одном направлении?
- **129.** Шар массой $m_1 = 5{,}00$ кг ударяется о неподвижный шар массой $m_2 = 2{,}50$ кг, который после удара стал обладать кинетической энергией $E'_{\rm K2} = 5{,}00$ Дж. Считая удар центральным и абсолютно упругим, найти для первого шара кинетическую энергию до удара $E_{\rm K1}$ и после удара $E'_{\rm K1}$.
- **130.** Движущийся шар массой $m_1 = 200$ г ударяется о неподвижный шар массой $m_2 = 400$ г. Считать удар абсолютно упругим

прямым центральным. Какую часть кинетической энергии $E_{\kappa 1}$ первый шар передает второму?

Работа силы. Закон сохранения энергии

- **131.** Какую надо совершить работу A, чтобы пружину жесткостью k=800 кH/м, сжатую на $\Delta\ell_1=6{,}00$ см, дополнительно сжать на $\Delta\ell_2=8{,}00$ см?
- **132.** Тело массой m = 10,0 кг скользит вниз по наклонной плоскости с углом у основания $\alpha = 40,0^{\circ}$. Высота наклонной плоскости h = 11,0 м. Найти кинетическую энергию тела у основания и потери механической энергии, если коэффициент трения скольжения $\mu = 0,150$. Перед началом движения тело находилось на вершине в состоянии покоя.
- 133. При сжатии невесомой пружины в пистолете была совершена работа $A=0,120\,$ Дж. Затем из пружинного пистолета был произведен выстрел пулей массой $m_2=8,00\,$ г. Определить максимальную силу $F_{\rm max}$, прикладываемую для сжатия пружины, и скорость v пули при ее вылете из пистолета. Коэффициент жесткости пружины $k=150\,$ Н/м.
- **134.** Груз массой m=10,0 кг перемещают с постоянным ускорением вверх по наклонной плоскости с углом у основания $\alpha=40,0^\circ$ на расстояние S=2,00 м. Найти работу, совершаемую при перемещении груза, если время движения t=2,50 с, а коэффициент трения скольжения $\mu=0,150$. Перед началом движения груз находился в состоянии покоя.
- **135.** Какую работу A необходимо произвести, чтобы телеграфный столб массой $m_1 = 200$ кг, к вершине которого прикреплена крестовина массой $m_2 = 30,0$ кг, перевести из горизонтального положения в вертикальное? Длина столба L = 10,0 м.
- **136.** Тело массой m = 2,00 кг под действием силы F = 50,0 Н поднимается по наклонной плоскости с углом у основания $\alpha = 30,0^{\circ}$ на высоту h = 1,00 м. Направление силы F совпадает с направлением движения тела. Коэффициент трения тела скольжения $\mu = 0,200$. Определить величину совершаемой работы A. Найти скорость v тела в момент окончания подъема.

- **137.** Тело массой $m = 5{,}00$ кг поднимают вертикально вверх на высоту $h = 10{,}0$ м под действием силы F = 120 Н. Найти конечную скорость v тела, используя закон сохранения энергии.
- **138.** На тонкой невесомой нити длиной L = 1,00 м висит груз массой m = 2,00 кг. Какую начальную скорость v_0 надо сообщить грузу, чтобы он смог сделать полный оборот?
- **139.** На тонком невесомом стержне длиной $\ell = 1,00$ м висит груз массой m = 2,00 кг. Какую начальную скорость v_0 надо сообщить грузу, чтобы он смог сделать полный оборот?
- **140.** Автомобиль, двигаясь равноускоренно из состояния покоя развивает скорость $v_2 = 54,0\,$ км/ч. Найти отношение работы A_1 , совершаемой двигателем автомобиля при разгоне из состояния покоя до $v_1 = 27,0\,$ км/ч, к работе A_2 , затраченной на увеличение скорости от v_1 до v_2 . Силами трения и сопротивления пренебречь.

Вращение твердого тела

- **141.** Тонкостенный цилиндр, масса которого m=12,0 кг, а диаметр основания d=30,0 см, вращается согласно уравнению $\varphi = A + Bt + Ct^3$, где A=4,00 рад; B=-2,00 рад/с; C=0,20 рад/с³. Определить действующий на цилиндр момент сил M в момент времени t=3,00 с.
- **142.** На обод маховика диаметром d = 60,0 см намотан невесомый и нерастяжимый шнур, к концу которого привязан груз массой m = 2,00 кг. Груз, опускаясь, раскручивает маховик. Определить момент инерции I маховика, если он, вращаясь равноускоренно, за время t = 3,00 с приобрел угловую скорость $\omega = 9,00$ рад/с.
- **143.** Невесомая и нерастяжимая нить с привязанными к ее концам грузами массой $m_1 = 50,0$ г и $m_2 = 60,0$ г, соответственно, перекинута через блок диаметром d = 4,00 см. Определить момент инерции I блока, если он получил угловое ускорение $\varepsilon = 1,50$ рад/ c^2 .
- **144.** Стержень вращается вокруг оси, проходящей через его середину, согласно уравнению $\varphi = At + Bt^3$, где A = 2,00 рад; B = 0,200 рад/с³. Определить вращающий момент M, действующий

- на стержень через время t = 2,00 с после начала вращения, если момент инерции стержня I = 0,048 кг·м².
- **145.** Определить момент силы M, который необходимо приложить к блоку, вращающемуся с частотой n=12,0 с⁻¹, чтобы он остановился в течение времени t=8,00 с. Диаметр блока d=30,0 см. Массу блока m=6,00 кг считать равномерно распределенной по ободу.
- **146.** Блок массой m=0,400 кг, имеющий форму сплошного диска, вращается под действием силы натяжения невесомой и нерастяжимой нити, к концам которой подвешены грузы массой $m_1=0,300$ кг и $m_2=0,700$ кг. Определить силы T_1 и T_2 натяжения нити по обе стороны блока.
- **147.** Однородный стержень длиной $\ell = 2,00$ м и массой m = 0,500 кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня. С каким угловым ускорением ϵ вращается стержень, если вращающий момент M = 0,500 Н·м, а момент силы трения $M_{\rm Tp} = 0,140$ Н·м.
- **148.** Шар массой m = 10,0 кг и радиусом R = 20,0 см вращается вокруг оси, проходящей через его центр. Уравнение вращения шара имеет вид: $\varphi = A + Bt^2 + Ct^3$, где A = 5,00 рад; B = 4,00 рад/с²; C = -0,100 рад/с³. Написать закон изменения момента сил M от времени с числовыми коэффициентами. Какова величина момента сил M в момент времени t = 2,00 с?
- **149.** Однородный стержень длиной $\ell = 3,00$ м и массой m = 1,50 кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через конец стержня. С каким угловым ускорением ϵ вращается стержень, если вращающий момент M = 2,50 Н·м. Силой трения пренебречь.
- **150.** Однородный диск радиусом R = 20,0 см и массой m = 5,00 кг вращается вокруг оси, проходящей через его центр. Зависимость угловой скорости ω от времени задается уравнением $\omega = A + Bt$, где A = 8,00 рад/с, B = 8,00 рад/с². Найти величину касательной силы, приложенной к ободу диска, угловое ускорение ε и частоту вращения n диска через t = 1,00 с после начала движения.

Закон сохранения момента импульса

- **151.** Однородный тонкий стержень массой $m_1 = 0,200$ кг и длиной $\ell = 1,00$ м может свободно вращаться вокруг горизонтальной оси, перпендикулярной стержню и проходящей через его центр масс. В верхний конец стержня попадает пластилиновый шарик, летящий горизонтально (перпендикулярно оси вращения стержня) со скоростью v = 10,0 м/с, и прилипает к стержню. Масса шарика $m_2 = 10,0$ г. Определить угловую скорость ω системы «стержень—шарик» сразу после взаимодействия.
- **152.** Карандаш, поставленный вертикально, падает на стол. Какую угловую ω и линейную скорости \boldsymbol{v} будут иметь в конце падения: 1) середина карандаша; 2) его верхний конец? Длина карандаша $\ell = 15.0$ см.
- **153.** На краю платформы в виде диска, вращающегося по инерции вокруг вертикальной оси с частотой $n_1 = 8,00$ мин⁻¹, стоит человек массой $m_1 = 70,0$ кг. Когда человек перешел в центр платформы, она стала вращаться с частотой $n_2 = 10,0$ мин⁻¹. Определить массу m_2 платформы. Момент инерции I человека рассчитывать как для материальной точки.
- **154.** Однородный стержень длиной $\ell = 1,79$ м подвешен на горизонтальной оси, проходящей через верхний конец стержня. На какой угол ϕ необходимо отклонить стержень, чтобы нижний конец стержня при прохождении положения равновесия имел скорость v = 5,00 м/с?
- **155.** На краю неподвижной платформы в виде диска диаметром d=2,00 м и массой $m_1=200$ кг стоит человек массой $m_2=60,0$ кг. С какой угловой скоростью ω начнет вращаться платформа, если человек поймает летящий на него мяч массой $m_3=0,500$ кг? Траектория мяча горизонтальна и проходит на расстоянии R=1,50 м от оси платформы. Скорость мяча v=5,00 м/с. Момент инерции I человека рассчитывать как для материальной точки.
- **156.** Два горизонтальных диска свободно вращаются вокруг вертикальной оси, проходящей через их центры. Диски вращаются в одном направлении с угловыми скоростями $\omega_1 = 1,57$ рад/с и $\omega_2 = 3,15$ рад/с. Моменты инерции дисков относительно данной оси

- $I_1 = 21,2$ кг·м² и $I_2 = 16,4$ кг·м². После падения верхнего диска на нижний они начали вращаться как единое целое. Найти угловую скорость вращения дисков.
- **157.** В центре вращающейся горизонтальной платформы массой m=80,0 кг и радиусом R=1,00 м стоит человек и держит в разведенных в стороны руках гири. Во сколько раз увеличится кинетическая энергия платформы с человеком, если человек, опустив руки, уменьшит свой момент инерции от $I_1=2,94$ до $I_2=0,980$ кг·м²? Считать платформу однородным диском.
- **158.** На краю неподвижной платформы в виде диска диаметром d=2,00 м и массой $m_1=150$ кг стоит человек массой $m_2=80,0$ кг. С какой угловой скоростью ω начнет вращаться платформа, если человек толкнет стальной шар массой $m_3=5,00$ кг? Траектория шара горизонтальна, перпендикулярна радиусу платформы и проходит на расстоянии R=1,30 м от оси платформы. Скорость шара v=5,00 м/с. Момент инерции I человека рассчитывать как для материальной точки.
- **159.** Горизонтальная платформа массой m = 80,0 кг и радиусом R = 1,00 м вращается с частотой $n_1 = 20,0$ об/мин. В центре платформы стоит человек и держит в разведенных в стороны руках гири. С какой частотой n_2 будет вращаться платформа, если человек, опустив руки, уменьшит свой момент инерции от $I_1 = 2,94$ до $I_2 = 0,980$ кг·м²? Считать платформу однородным диском.
- **160.** Два горизонтальных диска свободно вращаются вокруг вертикальной оси, проходящей через их центры. Диски вращаются в противоположных направлениях с угловыми скоростями $\omega_1 = 3,47$ рад/с и $\omega_2 = 6,15$ рад/с. Моменты инерции дисков относительно данной оси $I_1 = 10,2$ кг·м² и $I_2 = 11,2$ кг·м². После падения верхнего диска на нижний они начали вращаться как единое целое. Найти угловую скорость вращения дисков.

Специальная теория относительности

- **161.** Тело движется с постоянной скоростью v относительно инерциальной системы отсчета. При каком значении скорости v длина тела в данной системе отсчета будет в два раза меньше его собственной длины? Чему равна относительная величина сокращения длины тела?
- **162.** Ракета движется со скоростью v относительно инерциальной системы отсчета. При каком значении скорости v длина ракеты в данной системе отсчета будет на $\eta = 36$ % меньше её собственной длины?
- **163.** Во сколько раз увеличивается продолжительность существования нестабильной частицы для наблюдателя, мимо которого она движется со скоростью \boldsymbol{v} , составляющей 99 % скорости света в вакууме c?
- **164.** Найти полную E и кинетическую $E_{\rm K}$ энергию (в мега-электрон-вольтах) электрона, движущегося со скоростью ${\it v}=0.75c$, где c скорость света в вакууме ($m_e=9.11\cdot 10^{-31}~{\rm kr}$; $1.9{\rm B}=1.60\cdot 10^{-19}~{\rm Дж}$).
- **165.** Частица движется со скоростью $\boldsymbol{v} = c/3$, где c скорость света в вакууме. Найти отношение энергии покоя E_0 к кинетической энергии E_{κ} частицы.
- **166.** При каком значении $\beta = v/c$, где v скорость движения частицы; c скорость света в вакууме, полная энергия E любой частицы вещества в n=3 раза больше ее энергии покоя E_0 ?
- **167.** Найти скорость движения электрона, если его полная энергия E в 10 раз больше энергии покоя E_0 .
- **168.** Скорость электрона v = 0.8c, где c скорость света в вакууме. Зная энергию покоя электрона $E_0 = 0.511 \,\mathrm{MpB}$, определить в тех же единицах кинетическую энергию E_{κ} электрона.
- **169.** Во сколько раз полная энергия E электрона, обладающего кинетической энергией $E_{\rm K}=1,53$ МэВ, больше его энергии покоя $E_0=0,511$ МэВ?

170. При каком значении $\beta = v/c$, где v — скорость движения частицы; c — скорость света в вакууме, кинетическая энергия E_{κ} частицы будет равна удвоенной энергии покоя E_0 данной частицы?

СПРАВОЧНЫЕ МАТЕРИАЛЫ

КАК ОФОРМИТЬ КОНТРОЛЬНУЮ РАБОТУ

- 1. К выполнению контрольных работ следует приступать только после изучения теоретического материала по данному разделу программы и внимательного ознакомления со справочным материалом, который облегчит Вашу работу и сэкономит время.
- 2. Все контрольные работы, от первой до последней, должны выполняться по методическим указаниям.
- 3. Каждая контрольная работа выполняется шариковой ручкой с черной, синей или фиолетовой пастой в отдельной школьной тетради. Для замечаний преподавателя, проверяющего работу, оставляют небольшие поля.
- 4. На лицевой стороне тетради приводятся сведения по следующему образцу:

Контрольная работа № 1 по дисциплине «ФИЗИКА» Студент 1-го курса направления 141200 Иванов Н. Н. номер зачетной книжки (шифр) 12122

- 5. Решение каждой задачи должно начинаться с новой страницы и содержать:
 - полный текст задачи;
 - буквенную запись условия в разделах «Дано» и «Найти»;
- аккуратный рисунок, иллюстрирующий условие и поясняющий решение задачи;
 - решение задачи до конца в общем виде;
 - окончательный числовой расчет;
 - ответ.

Приведенные выше требования должны соблюдаться и при выполнении работы над ошибками с учётом замечаний преподавателя.

6. Внимательно прочитайте условие задачи и проанализируйте, какая информация содержится в условии. Следует иметь в виду, что в

условии задачи каждое слово несет информацию. Если условие задачи допускает несколько вариантов толкования, то следует выбрать простейший вариант, не противоречащий условию.

- 7. Решение задач следует проводить исключительно в единицах СИ. Необходимо использовать общепринятые обозначения физических величин. Значения физических постоянных взять из приложений (или других справочных пособий).
- 8. Во всех случаях, когда это возможно, необходимо сделать аккуратный рисунок, иллюстрирующий условие и поясняющий решение задачи. Чертеж делается с помощью карандаша, циркуля и линейки. На чертеже должны быть изображены все векторные величины (силы, импульсы и т. п.), оси координат, расстояния, углы и т. п. Обозначения физических величин на рисунке должны совпадать с обозначениями тех же величин в разделах «Дано» и «Найти».
- 9. Решение задач необходимо сопровождать подробными пояснениями хода рассуждений. Выполнить анализ физических явлений, рассматриваемых в задаче. Определить законы, описывающие данные явления. Записать словесную формулировку и уравнения, выражающие законы, в обозначениях, принятых в условии задачи. Пояснить буквенные обозначения в формулах. Во избежание ошибок необходимо все параметры, относящиеся к одному и тому же состоянию или к одному и тому же телу, обозначить одним и тем же индексом, например: m_1 , v_1 , m_2 , v_2 , p_1 , V_1 , T_1 .
- 10. Задачи следует решать до конца в общем виде, не делая промежуточных вычислений (исключение составляют задачи на правила Кирхгофа и особо громоздкие задачи). Получив окончательный буквенный ответ, следует проверить его размерность, подставив единицы входящих физических величин. Если после необходимых преобразований и сокращений единицы в правой и левой частях равенства не совпадают, то надо искать ошибку в решении.
- 11. В формулах обозначение единицы физической величины следует помещать только после подстановки в формулу числовых значений величин и затем после промежуточных и конечных результатов вычисления. Например:

Правильно:

$$W = mgh = 1,25 \cdot 9,81 \cdot 143 \ Дж = 1,75 \cdot 10^3 \ Дж = 1,75 \ кДж.$$

Неправильно:

$$W = mgh \ Дж = 1,25 \cdot 9,81 \cdot 143 = 1,75 \cdot 10^3 \ Дж = 1,75 \ кДж$$

или

$$W = mgh = 1,25 \cdot 9,81 \cdot 143 = 1,75 \cdot 10^3 = 1,75$$
 кДж,

или

$$W = mgh = 1,25 \text{ кг } 9,81 \text{ м/c}^2 143 \text{м} = 1,75 \cdot 10^3 \text{ Дж} = 1,75 \text{ кДж}.$$

12. Каждую формулу следует писать на отдельной строке, по центру. Если формула настолько длинна, что не умещается в одной строке, то ее частично переносят на другую строку. В первую очередь перенос следует делать на знаках равенства и соотношениях между левой и правой частями формулы (=, \approx , <, >, \leq , \geq и т. д.), во вторую — на знаках сложения и вычитания (+, -, \pm и т. д.), в третью — на знаке умножения применением косого креста (\times) в конце одной строки и в начале следующей строки. Не допускаются переносы на знаке деления.

При переносе формул не допускается разделение индексов, показателей степени, а также выражений, относящихся к знакам логарифма, интеграла, тригонометрических функций, суммы (Σ) и произведения (Π) .

- 13. Для того чтобы избежать ошибок, рекомендуется дроби в формулах писать через горизонтальную черту. При этом знак равенства, а также знаки сложения, вычитания дробей писать на средней линии напротив дробной черты.
- 14. В окончательное буквенное решение следует подставить числовые значения всех входящих в него величин в единицах одной и той же системы и привести окончательный числовой ответ.

Приступая к вычислениям, помните, что числовые значения физических величин являются приближёнными. Поэтому при расчетах руководствуйтесь правилами действий с приближёнными числами. В контрольных работах по физике студенты должны дать ответ, со-

держащий столько значащих цифр, сколько значащих цифр содержат исходные данные. Для возможности округления результата следует проводить вычисления с количеством значащих цифр на одну больше, чем в исходных данных. (Если исходные данные содержат три значащие цифры, то вычисления делать с точностью до четырех значащих цифр, а ответ округлить до трех значащих цифр.)

- 15. Выполнить анализ полученного результата. Если результат противоречит условию задачи или законам природы, то задача решена неверно и необходимо начать все с начала;
 - 16. В конце решения необходимо записать полный ответ.
- 17. Решение задач рекомендуется записывать в тетрадь в том порядке, в котором следуют задания в контрольной работе (т. е. в порядке возрастания номеров).
 - 18. Выполненную контрольную работу сдают в деканат.
- 19. Проверенную контрольную работу студент получает в деканате.
- 20. В том случае, если контрольная работа не зачтена, студент обязан выполнить работу над ошибками.

Работа над ошибками выполняется в той же тетради после заголовка «Работа над ошибками» и заключается в правильном решении только незачтенных задач и ответов на вопросы преподавателя, соблюдая все указанные выше правила.

Исправленную работу сдают в деканат обязательно вместе с незачтенной работой и с рецензией на нее.

- 21. Во избежание повторения ошибок рекомендуется сдавать на проверку только одну контрольную работу. Следующую работу рекомендуется оформлять после того, как получена рецензия на предыдущую.
- 22. В случае нарушения указанных выше требований контрольная работа проверяться не будет.
- 23. С 1 июля по 31 августа контрольные работы на проверку не принимаются.

ДЕСЯТИЧНЫЕ КРАТНЫЕ И ДОЛЬНЫЕ ПРИСТАВКИ И МНОЖИТЕЛИ

Таблица 1 Десятичные кратные приставки и множители

Приставка				
Наименование	Обозначение		Множитель	Пример
	русское	международное		
экса	Э	Е	10 ¹⁸	1 Эм=10 ¹⁸ м
пета	П	P	10 ¹⁵	$1 \Pi\text{M} = 10^{15} \text{M}$
тера	T	T	10 ¹²	$1 \text{ Tm} = 10^{12} \text{ m}$
гига	Γ	G	10 ⁹	$1 \Gamma_{\rm M} = 10^9 {\rm M}$
мега	M	M	10 ⁶	$1 \text{ Mm} = 10^6 \text{ m}$
кило	К	k	10 ³	$1 \text{ KM} = 10^3 \text{ M}$
гекто	Γ	h	10 ²	$1 \text{ rm} = 10^2 \text{ m}$
дека	да	da	10 ¹	1 дам =10 ¹ м

Таблица 2 Десятичные дольные приставки и множители

Приставка				
Наименование	Обозначение		Множитель	Пример
	русское	международное		
деци	Д	d	10^{-1}	1 дм =10 ⁻¹ м
санти	c	c	10^{-2}	$1 \text{ cm} = 10^{-2} \text{ m}$
милли	M	m	10^{-3}	$1 \text{ MM} = 10^{-3} \text{ M}$
микро	MK	μ	10^{-6}	$1 \text{ мкм} = 10^{-6} \text{ м}$
нано	Н	n	10^{-9}	$1 \text{ HM} = 10^{-9} \text{ M}$
пико	П	p	$10^{-12} \\ 10^{-15}$	$1 \text{ nm} = 10^{-12} \text{ m}$
фемто	ф	f	10^{-15}	$1 \phi_{\rm M} = 10^{-15} {\rm M}$

Правила образования наименований и обозначений десятичных кратных и дольных единиц СИ

- 1. Приставку или её обозначение следует писать слитно с наименованием единицы, к которой она присоединяется, или с её обозначением.
- 2. Присоединение двух и более приставок подряд не допускается.

Правильно: Неправильно:

мегапаскаль килокилопаскаль

МПа ккПа

микрометр миллимиллиметр

MKM MMM

нанофарад миллимикрофарад

нФ ммкФ

3. Если единица образована как произведение или отношение единиц, приставку или ее обозначение присоединяют к наименованию или обозначению первой единицы, входящей в произведение или в отношение.

Правильно: Неправильно:

килопаскаль-секунда на метр $\frac{\kappa\Pi a \cdot c}{M}$ $\frac{\Pi a \cdot \kappa c}{M}$ $\frac{\Pi a \cdot \kappa c}{M}$ ньютон на миллиметр $\frac{\kappa H}{M}$ $\frac{H}{M}$

Присоединять приставку ко второму множителю произведения или к знаменателю допускается лишь в обоснованных случаях, когда такие единицы широко распространены и переход к единицам, образованным по правилу, связан с трудностями, например: тоннакилометр (\mathbf{T} ·км), вольт на сантиметр (\mathbf{B} /см), ампер на квадратный миллиметр (\mathbf{A} /мм²).

Рекомендации по выбору десятичных кратных и дольных единиц СИ

Выбор десятичной кратной или дольной единицы СИ определяется удобством ее применения.

Кратные и дольные единицы выбирают таким образом, чтобы числовые значения величины находились в диапазоне от 0,1 до 1000.

Для уменьшения вероятности ошибок при расчётах десятичные кратные и дольные единицы рекомендуется подставлять только в конечный результат, а в процессе вычислений все величины выражать в единицах СИ, заменяя приставки степенями числа 10, т. е. множителями 10^n .

В десятичных единицах СИ нет множителей 10^{-4} , 10^4 , 10^{-5} , 10^5 , 10^{-7} , 10^7 и т. п. Поэтому следует применять только те множители, которые приведены в табл. 1, 2.

В десятичных единицах СИ множители 10^{-2} , 10^{-1} , 10^{1} , 10^{2} используются очень редко, только в виде исключения, поэтому не следует их применять.

 Таблица 3

 Основные физические постоянные (округленные значения)

Величина	Обозначение	Значение величины
Нормальное ускорение свободного падения	g_n	9,81 m/c ²
Скорость света в вакууме	c	$3,00 \cdot 10^{8}$ M/c
Гравитационная постоянная	γ	$6,67 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kg}^2$

СОДЕРЖАНИЕ

ВАРИАНТЫ КОНТРОЛЬНОЙ РАБОТЫ № 1	3
ЗАДАЧИ К КОНТРОЛЬНОЙ РАБОТЕ № 1	4
Кинематика материальной точки	4
Динамика материальной точки	5
Соударение тел	6
Работа силы. Закон сохранения энергии	8
Вращение твердого тела	9
Закон сохранения момента импульса	11
Специальная теория относительности	13
СПРАВОЧНЫЕ МАТЕРИАЛЫ	15
Как оформить контрольную работу	15
Десятичные кратные и дольные приставки и множители	19

В 2009 году Университет стал победителем многоэтапного конкурса, в результате которого определены 12 ведущих университетов России, исследовательский которым присвоена категория «Национальный университет». Министерством образования науки Российской Федерации была утверждена программа его развития на 2009–2018 годы. В 2011 году Университет получил наименование «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики».

ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ

Институт холода и биотехнологий является преемником Санкт-Петербургского государственного университета низкотемпературных и пищевых технологий (СПбГУНиПТ), который в ходе реорганизации (приказ Министерства образования и науки Российской Федерации № 2209 от 17 августа 2011г.) в январе 2012 года был присоединен к Санкт-Петербургскому национальному исследовательскому университету информационных технологий, механики и оптики.

Созданный 31 мая 1931года институт стал крупнейшим образовательным и научным центром, одним их ведущих вузов страны в области холодильной, криогенной техники, технологий и в экономике пищевых производств.

В институте обучается более 6500 студентов и аспирантов. Коллектив преподавателей и сотрудников составляет около 900 человек, из них 82 доктора наук, профессора; реализуется более 40 образовательных программ.

Действуют 6 факультетов:

- холодильной техники;
- пищевой инженерии и автоматизации;
- пищевых технологий;
- криогенной техники и кондиционирования;

- экономики и экологического менеджмента;
- заочного обучения.

За годы существования вуза сформировались известные во всем мире научные и педагогические школы. В настоящее время фундаментальные и прикладные исследования проводятся по 20 основным научным направлениям: научные основы холодильных машин и термотрансформаторов; повышение эффективности холодильных установок; газодинамика и компрессоростроение; совершенствование процессов, машин и аппаратов криогенной техники; теплофизика; теплофизическое приборостроение; машины, аппараты и системы кондиционирования; хладостойкие стали; проблемы прочности при низких температурах; твердотельные преобразователи энергии; холодильная обработка и хранение пищевых продуктов; тепломассоперенос в пищевой промышленности; технология молока и молочных продуктов; физико-химические, биохимические и микробиологические основы переработки пищевого сырья; пищевая технология продуктов из растительного сырья; физико-химическая механика и тепло- и массообмен; методы управления технологическими процессами; техника пищевых производств и торговли; промышленная экология; от экологической теории к практике инновационного управления предприятием.

В институте создан информационно-технологический комплекс, включающий в себя технопарк, инжиниринговый центр, проектно-конструкторское бюро, центр компетенции «Холодильщик», научно-образовательную лабораторию инновационных технологий. На предприятиях холодильной, пищевых отраслей реализовано около тысячи крупных проектов, разработанных учеными и преподавателями института.

Ежегодно проводятся международные научные конференции, семинары, конференции научно-технического творчества молодежи.

Издаются журнал «Вестник Международной академии холода» и электронные научные журналы «Холодильная техника и кондиционирование», «Процессы и аппараты пищевых производств», «Экономика и экологический менеджмент».

В вузе ведется подготовка кадров высшей квалификации в аспирантуре и докторантуре по 11 специальностям.

Действуют два диссертационных совета, которые принимают к защите докторские и кандидатские диссертации.

Вуз является активным участником мирового рынка образовательных и научных услуг.

www.ihbt.edu.ru www.gunipt.edu.ru

Баранов Игорь Владимирович Самолетов Владимир Александрович Частый Виктор Леонидович

ФИЗИКА КОНТРОЛЬНАЯ РАБОТА № 1

Учебно-методическое пособие

Редактор Т.В. Белянкина

Корректор Н.И. Михайлова

Компьютерная верстка В.А. Самолетов

Подписано в печать 25.05.2012. Формат 60×84 1/16 Усл. печ. л. 1,63. Печ. л. 1,75. Уч.-изд. л. 1,56 Тираж 200 экз. Заказ № С 48

НИУ ИТМО. 197101, Санкт-Петербург, Кронверкский пр., 49 ИИК ИХиБТ. 191002, Санкт-Петербург, ул. Ломоносова, 9

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики 197101, Санкт-Петербург, Кронверкский пр., 49 Институт холода и биотехнологий 191002, Санкт-Петербург, ул. Ломоносова, 9

