РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УННИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

17/1/5

Одобрено кафедрой «Электротехника»

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Задание на контрольную работу №3 с методическими указаниями для студентов III курса

специальностей 190401 ЭЛЕКТРОСНАБЖЕНИЕ ЖЕЛЕЗНОДОРОЖНЫХ ДОРОГ (ЭНС)

190402 АВТОМАТИКА, ТЕЛЕМЕХАНИКА И СВЯЗЬ НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ (АТС)

Москва — 2006

ОБЩИЕ УКАЗАНИЯ

Составители: канд. техн. наук, проф. А.А. Сатаров канд. физ.-мат. наук, доц. В.Т. Козулин зав. лаб. С.В. Колоколов

Рецензент: канд. техн. наук, доц. Шумейко В.В.

© Российский государственный открытый технический университет путей сообщения, 2007

В третьей контрольной работе студенты специальностей ATC, ЭНС решают три задачи:

1. Расчет разветвленной магнитной цепи при постоянных то-ках;

2. Расчет цепи переменного тока, содержащей катушку с ферромагнитным сердечником;

3. Расчет электромагнитного поля.

Контрольные задания имеют 100 вариантов. Варианты задач № 1 и 2 отличаются друг от друга схемами и числовыми значениями заданных величин. Номер варианта в этих задачах определяется по двум последним цифрам шифра студента: по предпоследней цифре выбирают номер схемы, а по последней — номер строки в табл. 2 и 4.

В задаче №3 одна схема для всех вариантов. Исходные расчетные данные и порядок определения варианта приведены в табл.6.

Требования к выполнению и оформлению контрольных работ изложены в рабочей программе курса «Теоретические основы электротехники».

Задача № 1

Расчет разветвленной магнитной цепи при постоянных токах

Для магнитной цепи (рис. 1) выполнить следующее:

1. Начертить эквивалентную схему, указав на ней направление магнитных потоков и магнитодвижущих сил (МДС).

2.Составить систему уравнений по законам Кирхгофа для расчета цепи.

3. Определить магнитные потоки в стержнях и значение магнитной индукции в воздушном зазоре.

Размеры магнитопровода на рис.1 даны в мм. Магнитопровод выполнен из электротехнической стали, кривая намагничи-

6

4

Рис.1. Эскиз магнитопровода (к задаче №1)

5

Рис. 1. Окончание

вания которой представлена в табл.1. Величины токов и число витков обмотки для каждого варианта даны в табл.2.

Таблица 1

Кривая намагничивания к задаче №1

<i>В</i> , Тл	0	0,4	0,8	1,2	1,6	2
H, A/M	0	200	400	950	3900	15000

Таблица 2

Исходные данные к задаче №1

Номер строки	<i>I</i> ₁ , A	Число витков, <i>W</i> ₁	<i>I</i> ₂ , A	Число витков, <i>W</i> ₂
1	30	200	10	220
2	25	250	15	100
3	20	200	5	250
4	30	220	10	180
5	25	250	15	100
6	20	250	5	400
7	26	200	10	250
8	30	180	5	350
9	25	220	10	200
0	20	220	5	300

При расчете цепи потоками рассеяния пренебречь.

Методические указания к задаче № 1

Для определения магнитных потоков магнитную цепь разбивают на однородные участки, каждый из них выполнен из определенного материала и имеет одинаковое поперечное сечение вдоль всей своей длины.

Магнитные потоки замыкаются по средним линиям участков сердечника (магнитопровода). На пересечении средних линий горизонтальных участков и средней линии среднего стержня намечают два узла. Длины трех участков ℓ_k (м) определяют от узлов, с учетом зазора; поперечные сечения S_k вычисляют в м².

Подобно электрическим цепям для магнитной цепи составляют эквивалентную схему (схему замещения). Направления МДС определяют по правилу «буравчика». Указывают условные магнитные сопротивления нелинейных и линейного участка. Таким образом, схема состоит из трех ветвей, одна из них содержит два участка, для схемы составляют уравнения по законам Кирхгофа. Аналитические расчеты зависимостей потоков от магнитного напряжения $U_{\rm M}$ между узлами рекомендуется выполнить для каждой ветви в отдельной таблице.

Задаются значениями магнитной индукции (табл.1) и определяют магнитные потоки ветвей и напряженности магнитного поля участков. Для ферромагнитных участков напряженность в поля определяют по кривой намагничивания. Напряженность в воздушном зазоре рассчитывают по известной формуле, считая, что индукция в зазоре равна индукции ветви. Затем для каждого значения магнитного потока на основе эквивалентной схемы находят и заносят в таблицу для каждой ветви межузловое магнитное напряжение $U_{\rm M}$ с учетом знаков МДС относительно потоков. Для определения $U_{\rm M}$ можно использовать уравнения, составленные по второму закону Кирхгофа. Затем на основании результатов вычислений на одном графике строят зависимости магнитных потоков ветвей от общего аргумента $U_{\rm M}$.

Графически определяют то значение магнитного напряжения, при котором выполняется первый закон Кирхгофа для-

магнитной цепи ($\sum \Phi = 0$). Потоки Φ_1, Φ_2, Φ_3 , соответствующие этому магнитному напряжению, являются искомыми величинами. Индукцию в зазоре находят по потоку соответствующей ветви.

Пример подробного решения аналогичной задачи приведен в рекомендованной литературе (например [3, с. 55÷60]).

Задача №2

Расчет цепи переменного тока, содержащей катушку с ферромагнитным сердечником

Электрическая цепь (рис. 2) содержит катушку с ферромагнитным сердечником. Кривая намагничивания сердечника для положительных значений индукции и напряженности магнитного поля задана в виде таблицы (табл. 3). При этом пренебрегают явлениями гистерезиса и не учитывают вихревые токи, не учитываются явления рассеивания. Предполагается также, что индукция в сердечнике изменяется по синусоидальному закону.

Таблица 3

Кривая намагничивания

<i>В</i> , Тл	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2	1,3	1,4	1,6	1,7	1,75
<i>H</i> , А/м	100	120	140	160	200	250	350	500	700	1000	1800	2500	3000

Параметры элементов схемы, максимальная величина магнитной индукции B_m , длина ℓ средней магнитной линии и поперечное сечение *S* сердечника для различных вариантов (исходные данные) приведены в табл. 4. Значения индуктивного X_L и емкостного X_C сопротивлений соответствуют частоте *f*, указанной в этой же таблице.

Аппроксимирующее выражение кривой намагничивания:

$$H = a \cdot B^3. \tag{1}$$

В задаче требуется:

1. Найти коэффициент «*a*» аппроксимирующего выражения, используя метод наименьших квадратов. Построить в одной и

Рис. 2. (Продолжение). Схема цепи переменного тока, содержащей катушку с ферромагнитным сердечником

Таблица 4

Рис. 2. (*Окончание*). Схема цепи переменного тока, содержащей катушку с ферромагнитным сердечником

той же системе декартовых координат кривые намагничивания по полученному аппроксимирующему выражению и заданную таб. 3. При этом построение выполнить как для положительных, так и для отрицательных значений *B* и *H*. Качественно сопоставить построенные кривые.

2. В одной и той же системе декартовых координат построить кривые изменения тока источника энергии *i* и приложенного к цепи напряжения *u* источника энергии от времени, т.е. кривые мгновенных значений тока и напряжения источника: i = i (t) и u = u (t).

3. Определить показания приборов, считая, что вольтметр и амперметр имеют электромагнитное измерительное устройство, а ваттметр — электродинамическое.

Исходные да	нные кза	адаче	JN	<u>°</u> Z
-------------	----------	-------	----	------------

Номер строки	<i>г</i> , Ом	<i>X_L</i> , Ом	<i>X_C</i> , Ом	Число витков, W	<i>l</i> , см	<i>S</i> , см ²	<i>f,</i> Гц	<i>В_m</i> , Тл
1	15	25	30	500	55	6,5	50	1,4
2	10	40	50	600	60	6	80	1,6
3	15	35	50	700	65	5,5	100	1,5
4	12	25	60	800	70	5	150	1,45
5	20	50	100	900	75	4,5	90	1,55
6	25	60	60	1000	80	4	100	1,5
7	30	100	50	1100	85	3,5	50	1,65
8	28	80	70	1200	90	3	60	1,6
9	35	60	80	1300	95	2,5	80	1,55
0	40	50	100	1400	100	2	100	1,45

Методические указания к задаче №2

Для расчета нелинейных цепей переменного тока могут быть использованы следующие основные методы:

1. Графические. Все необходимые построения и расчеты производятся на основе графиков, связывающих между собой различные параметры как всей цепи, так и отдельных ее элементов [1];

2. Аналитические. В этом случае характеристики, связывающие между собой различные параметры элементов, с той или иной степенью приближения выражаются аналитически [1].

Применение аналитического метода расчета цепи, содержащей катушку с ферромагнитным сердечником, а также методика определения коэффициента «а» аппроксимирующего выражения (1) могут быть пояснены приведенным ниже примером.

Пусть необходимо рассчитать цепь, схема которой приведена на рис. 3. Значения параметров элементов цепи сведены в табл. 5. Кривая намагничивания сердечника для рассматриваемого примера задана в виде табл. 6.

Рис. 3. Схема цепи, рассчитываемой в качестве примера

Таблица 5 Исхолные ланные (для рассматриваемого примера)

		, , 	······	, P	- F		r	
JNº	r Om	X. OM	X ₋ OM	Число	1 см	$S c M^2$	f Fu	ВТл
строки	7, O.M	m_L , o_m	<i>¹¹C</i> , O ¹¹	витков, W	<i>ν</i> , υ	5,011	ј, щ	D_m , in
55	20	300	100	700	50	6,0	50	1,2

Таблица 6

Кривая намагничивания

(данные для рассматриваемого примера)

№ отсчета	1	2	3	4	5	6	7	8	9	10	11
<i>В</i> , Тл	0,02	0,1	0,45	0,7	0,82	0,93	1,0	1,05	1,1	1,15	1,2
<i>H</i> , А/м	25	50	100	150	200	250	300	350	400	450	500

Отметим, что кривая намагничивания (табл. 6) примерно соответствует кривой намагничивания листовой электротехнической стали марки Э1[6]. Вследствие сделанных выше допущений (отсутствие гистерезиса и т.д.) можно считать, что при B =0 напряженность магнитного поля H = 0.

В соответствии с условием задачи индукция в сердечнике изменяется по синусоидальному закону. Размах (диапазон) изменения индукции от минимальных отрицательных значений до максимальных положительных значений определяется величиной амплитуды B_m , заданной в табл. 5. И для решения задачи требуется знание кривой намагничивания и для отрицательных значений индукции (и, соответственно, напряженности магнитного поля). Так как в задаче не учитываются явления гистерезиса, рассеяния и вихревые токи, то кривая намагничивания, заданная табл.6, симметрична относительно начала координат. В декартовой системе координат заданная в рассматриваемом примере кривая намагничивания и для отрицательных и для положительных значений *В* и *Н* представлена в виде кривой *I* на рис. 4.

Рис. 4. Кривые намагничивания:

 1 – исходная, заданная характеристика; 2 – аппроксимирующая кривая Предлагается следующий порядок расчета цепи.

1. Определяем коэффициент «*а*» аппроксимирующего выражения (1). Для этого используем метод наименьших квадратов (например, [7]).

Обозначим:

$$S = \sum_{i=1}^{n} \left(a \cdot B_i^3 - H_i \right)^2, \qquad (2)$$

где *n* – число отсчетов табл. 6;

i – номер отсчета;

B_i, *H_i* – соответствующие номеру отсчета значения индукции *В* и напряженности магнитного поля *H* в табл. 6.

Таблица7

 $\frac{\partial S}{\partial a} = 2 \cdot \sum_{i=1}^{n} \left[\left(a B_i^3 - H_i \right) \cdot B_i^3 \right].$ (3)

Потребуем:

Тогда:

$$\frac{\partial S}{\partial a} = 0 \quad . \tag{4}$$

Тогда:

$$\sum_{i=1}^{n} \left[\left(aB_i^3 - H_i \right) B_i^3 \right] = 0.$$
⁽⁵⁾

Следовательно:

$$a \cdot \sum_{i=1}^{n} B_{i}^{6} = \sum_{i=1}^{n} H_{i} \cdot B_{i}^{3} \quad .$$
 (6)

T.e.

$$a = \frac{\sum_{i=1}^{n} H_{i} \cdot B_{i}^{3}}{\sum_{i=1}^{n} B_{i}^{6}} .$$
 (7)

Подставляя в соотношение (7) соответствующие значения и табл.6 и считая n = 11, получим а $\cong 301, 11$.

Таким образом, аппроксимирующее выражение для рассматриваемого примера имеет вид:

$$H = 301, 11 \cdot B^3 \ . \tag{8}$$

Величина «а» имеет размерность, но мы будем использовать ее численное значение, не указывая размерность, а величины B и H выражать в системе «СИ», т.е. B – в Тл, H – в А/м.

Задаваясь величинами индукции *В* из табл. 6 и используя соотношения (8), определим значения *H*, соответствующие каждому из значений *B*. Результаты приведены в табл. 7.

Аппроксимирующая кривая намагничивания

	№ отсчета	1	2	3	4	5	6	7	8	9	10	11
[<i>В</i> , Тл	0,02	0,1	0,45	0,7	0,82	0,93	1,0	1,05	1,1	1,15	1,2
[H, A/M	0,002	0,3	27,4	103,2	166	242,2	301,1	348,6	400,8	457,95	520,3

На рис. 4 показана кривая намагничивания, построенная в соответствии с табл. 7. При этом, учитывая, что кривая симметрична относительно начала координат, построение выполнено как для положительных, так и для отрицательных значений *B* и *H*.

Таким образом, кривая *1* (рис. 4) — исходная, заданная, характеристика намагничивания, а кривая *2* — аппроксимирующая кривая, построенная в соответствии с соотношением (8).

2. Определение закона изменения напряжения и тока источника

Магнитная индукция В сердечника изменяется по закону:

$$B = B_m \cdot \sin(\omega \cdot t) = 1, 2 \cdot \sin(314 \cdot t) \operatorname{T}\pi, \tag{9}$$

где $\omega = 2\pi \cdot f = 314$ рад/с.

Напряжение на катушке (между точками *с* и *d* схемы рис. 3):

$$u_k = U_{km} \cdot \sin\left(\omega \cdot t + \frac{\pi}{2}\right) , \qquad (10)$$

где U_{km} — амплитуда напряжения.

$$U_{km} = \sqrt{2} \cdot 4,44 \cdot W \cdot f \cdot S \cdot B_m = 158,23$$
 B, (11)

где *W* – число витков катушки;

f – частота изменения индукции в сердечнике;

S — сечение сердечника;

B_m – амплитуда индукции в сердечнике.

Тогда:

$$u_k = 158, 23 \cdot \sin\left(314 \cdot t + \frac{\pi}{2}\right) \mathbf{B}.$$
 (12)

Мгновенное значение тока катушки находим на основе закона полного тока:

$$i_k = \frac{H \cdot \ell}{W},\tag{13}$$

- где ℓ длина средней линии магнитной индукции в сердечнике;
 - *H* напряженность магнитного поля в сердечнике.

Используя аппроксимирующее выражение (1), получим:

$$i_{k} = \frac{a \cdot B^{3} \cdot l}{W} = \frac{l \cdot a}{W} \cdot B_{m}^{3} \cdot \sin^{3}(\omega t) .$$
(14)

Известно [2], что

$$\sin^3(\omega t) = \frac{3}{4} \cdot \sin(\omega t) - \frac{1}{4} \cdot \sin(3\omega t) \quad . \tag{15}$$

Тогда:

$$i_{k} = \frac{1}{4} \cdot \frac{l \cdot a}{W} \cdot B_{m}^{3} \cdot \left[3 \cdot \sin(\omega t) - \sin(3\omega t) \right].$$
(16)

Из соотношения (16) видно, что в токе катушки появляется составляющая с частотой ($3\omega t$), т.е. третья гармоника. При выбранном способе аппроксимации кривой намагничивания амплитуда третий гармоники в три раза меньше амплитуды основной гармоники (с частотой ω).

Подставляя в соотношение (16) данные из табл. 5 и величину коэффициента «*а*», получим:

$$i_k = 0,279 \cdot \sin(314 \cdot t) - 0,0929 \cdot \sin(942 \cdot t) \text{ A.}$$
 (17)

Ток катушки i_{κ} для приведенных на рис. 2 схем равен току i источника.

Определим комплекс полного сопротивления участка *ac* цепи рис. 3 при протекании через этот участок первой и третьей гармоники тока *i*_к в отдельности.

а. Для первой гармоники

$$\underline{Z}_{ac(1)} = \frac{(r - jx_c) \cdot j \cdot x_L}{r + j \cdot (x_L - x_c)} = \frac{r \cdot x_L^2}{r^2 + (x_L - x_c)^2} + j\frac{r^2 \cdot x_L - x_L^2 \cdot x_c + x_L \cdot x_c^2}{r^2 + (x_L - x_c)^2} = (18)$$
$$= A_1 + jB_1,$$

где
$$A_{1} = \frac{r \cdot x_{L}^{2}}{r^{2} + (x_{L} - x_{c})^{2}};$$
$$B_{1} = \frac{r^{2} \cdot x_{L} - x_{L}^{2} \cdot x_{c} + x_{L} \cdot x_{c}^{2}}{r^{2} + (x_{L} - x_{c})^{2}}.$$

Получим:

$$\underline{Z}_{ac(1)} = Z_{ac(1)} e^{j\varphi_{ac(1)}} = \sqrt{A_1^2 + B_1^2} \cdot e^{j \cdot arctg \frac{B_1}{A_1}},$$
(19)

где $Z_{ac(1)}$ – полное сопротивление участка «*ac*» цепи рис. 3 при протекании через участок первой гармоники тока .

 φ_{ac(1)} – сдвиг по фазе между напряжением участка «*ac*», соответствующим протекающей через участок первой гармоники тока, и первой гармоникой тока *i_k*.

Для исходных данных табл. 5 имеем:

$$\underline{Z}_{ac(1)} = 152, 2 \cdot e^{-j73^{\circ}} \operatorname{OM}.$$
⁽²⁰⁾

17

б. Для третьей гармоники

$$\underline{Z}_{ac(3)} = \frac{\left(r - j\frac{x_c}{3}\right) \cdot j(3x_L)}{r + j \cdot \left(3x_L - \frac{x_c}{3}\right)} = \frac{r \cdot (3x_L)^2}{r^2 + \left(3x_L - \frac{x_c}{3}\right)^2} + \frac{r \cdot (3x_L) - (3x_L)^2 \cdot \left(\frac{x_c}{3}\right) + 3x_L \cdot \left(\frac{x_c}{3}\right)^2}{r^2 + \left(3x_L - \frac{x_c}{3}\right)^2} = A_3 + jB_3,$$
(21)

где
$$A_3 = \frac{81 \cdot r \cdot x_L^2}{9 \cdot r^2 + (9x_L - x_c)^2};$$

 $B_3 = \frac{27 \cdot x_L \cdot r^2 - 27 \cdot x_L^2 \cdot x_c + 3 \cdot x_L \cdot x_c^2}{9 \cdot r^2 + (9x_L - x_c)^2}.$

Следовательно:

$$\underline{Z}_{ac(3)} = Z_{ac(3)} \cdot e^{j\varphi_{ac(3)}} = \sqrt{A_3^2 + B_3^2} \cdot e^{jarctg\frac{B_3}{A_3}} , \qquad (22)$$

- где $Z_{ac(3)}$ полное сопротивление участка «*ac*» цепи рис. 3 при протекании через участок третьей гармоники тока i_k ;

Для данных табл. 5:

$$\underline{Z}_{ac(3)} = 40,36 \cdot e^{-j57,71^0} \,\mathrm{OM} \;. \tag{23}$$

Комплексные амплитуды напряжений на участке «*ac*» цепи рис. 3, соответствующих протекающим через участок «*ac*» пер-

вой и третьей гармониками тока *i_k* в отдельности, могут быть на основе закона Ома соответственно представлены:

$$\dot{U}_{mac(1)} = \dot{I}_{km(1)} \cdot \underline{\dot{Z}}_{ac(1)} = 0,279 \cdot 152, 2 \cdot e^{-j73^{\circ}} = 42, 5 \cdot e^{-j73^{\circ}} \text{ B.}$$
(24)

$$\dot{U}_{mac(3)} = \dot{I}_{km(3)} \cdot \underline{\dot{Z}}_{ac(3)} = (-0,0929) \cdot 40,36 \cdot e^{-j57,71^{\circ}} = -3,75 \cdot e^{-j57,71^{\circ}} \text{B}.$$
(25)

Поэтому для мгновенных значений напряжений участка «*ac*» первой и третьей гармоник соответственно можно записать:

$$u_{ac(1)} = 42,5 \cdot \sin\left(\omega t - 73^{\circ}\right) = 42,5 \cdot \sin\left(314 \cdot t - 73^{\circ}\right)$$
B. (26)

$$u_{ac(3)} = -3,75 \cdot \sin\left(3\omega t - 57,71^{\circ}\right) = -3,75 \cdot \sin\left(942 \cdot t - 57,71^{\circ}\right) \text{ B.} \quad (27)$$

Так как участок «*ac*» рассматриваемой цепи содержит только линейные элементы, то на основании принципа суперпозиции можно записать:

$$u_{ac} = u_{ac(1)} + u_{ac(3)} = 42,5\sin(314t - 73^{\circ}) - 3,75\sin(942 \cdot t - 57,71^{\circ}) \quad \text{B}.$$
(28)

На основании второго закона Кирхгофа для напряжения источника (напряжения на входе цепи) имеем:

$$u = u_{k} + u_{ac} = 158, 23 \cdot \sin(314 \cdot t + 90^{\circ}) + 42, 5 \cdot \sin(314 \cdot t - 73^{\circ}) - -3, 75 \cdot \sin(942 \cdot t - 57, 71^{\circ}) \text{ B.}$$
(29)

Таким образом, напряжение источника содержит первую и третью гармоники. Для комплексной амплитуды первой гармоники напряжения источника можно записать:

$$\dot{U}_{m(1)} = 158, 23 \cdot e^{j90^{\circ}} + 42, 5 \cdot e^{j73^{\circ}} = 12, 43 + j117, 59 = 118, 25 \cdot e^{j84^{\circ}}$$
 B. (30)

Тогда в окончательном виде для мгновенного значения напряжения источника справедливо соотношение:

$$u = 118,25 \cdot \sin\left(314 \cdot t + 84^{\circ}\right) - 3,75 \cdot \sin\left(942 \cdot t - 57,71^{\circ}\right) \text{ B.}.$$
 (31)
19

Соотношения (17) и (31) и есть искомые соотношения для мгновенных значений тока и напряжения источника.

Далее необходимо в соответствии с заданием, используя соотношения (17) и (31), построить в декартовой системе координат кривые i = i(t) и u = u(t). Обе кривые строятся в одних и тех же осях. По оси абсцисс при этом откладывается время t(c), или изменяемая часть фазы ωt , рад. По оси ординат откладываются в соответствующих масштабах мгновенные значения тока и напряжения источника питания рассматриваемой цепи.

3. ОПРЕДЕЛЕНИЕ ПОКАЗАНИЙ ВОЛЬТМЕТРА, АМПЕРМЕТРА И ВАТТМЕТРА

Вольтметр электромагнитной системы измеряет действующее значение напряжения:

$$U = \sqrt{\frac{U_{m(1)}^2}{2} + \frac{U_{m(3)}^2}{2}} = \sqrt{\frac{118,25^2 + 3,75^2}{2}} = 83,66 \approx 83,7 \ B. \ (32)$$

Амперметр электромагнитной системы измеряет действующее значение тока:

$$I = \sqrt{\frac{I_{m(1)}^2}{2} + \frac{I_{m(3)}^2}{2}} = \sqrt{\frac{0.279^2 + 0.0929^2}{2}} = 0,2079 \approx 0,21 \text{ A.} (33)$$

Ваттметр электродинамической системы измеряет активную мощность, потребляемую цепью:

$$P = P_1 + P_3 = U_1 \cdot I_1 \cos \varphi_1 + U_3 \cdot I_3 \cos \varphi_3 = \frac{118,25 \cdot 0,279}{2} \cdot \cos 84^0 + \frac{3,75 \cdot 0,0929}{2} \cdot \cos \left(-57,71^\circ\right) = 1,72 + 0,093 = 1,82 \text{ BT.}$$
(34)

Здесь *Р* – активная мощность, потребляемая цепью;

- *P*₁, *P*₃ активная мощность, потребляемая цепью вследствие протекания тока и действия напряжения первых и третьих гармоник соответственно;
- *U*₁, *U*₃ действующие значения напряжения первой и третьей гармоник соответственно;

- *I*₁, *I*₃ действующие значения тока первой и третьей гармоник соответственно;
- φ₁, φ₃ сдвиг по фазе между напряжением и током первой и третьей гармоник соответственно.

Задача № З

Расчет электрического поля постоянного тока в проводящей среде

На рис. 5 показан полушаровой электрод, радиус которого r = a. Электрод предназначен для заземления металлической опоры линии электропередачи постоянного тока. Ток короткого замыкания линии стекает через заземлитель в землю и растекается по толще земли. Земля выполняет роль обратного провода для линии электропередачи. Удельная проводимость земли $\gamma = 10^{-2}$ 1/Ом · м.

На рис. 5 кроме схематического изображения заземляющего полушарового электрода показана кривая (1) зависимости потенциала ф на поверхности земли от расстояния а от центра заземляющего электрода. На рисунке изображен также человек, шагающий по направлению к центру электрода, и показан механизм возникновения шагового напряжения U_{шк}: разности потенциалов между двумя точками

Рис. 5. Схематическое изображение заземляющего полушарового электрода и кривой распределения потенциала

на поверхности земли, расстояние которых a_{κ} от центра заземляющего электрода отличается друг от друга на величину человеческого шага (ℓ_{m}) .

Определить:

1. Плотность тока на расстоянии *a*₁ от центра полушарового электрода.

2. Напряженность поля Е на поверхности полусферы радиуса a_{1}

3. Значения потенциалов в точках на поверхности земли на расстояниях a_1, a_2, a_3, a_4 от центра полушарового электрода.

4. Шаговое напряжение на тех же расстояниях a_1, a_2, a_3, a_4 от центра полушарового электрода, принимая среднюю длину шага $\ell_{\rm m} = 0.8$ м. При этом считается, что воображаемый человек «шагает» (удаляется от центра, или приближается к центру электрода) по прямой, соединяющей точку его нахождения с центром заземляющего электрода.

5. Сопротивление заземления полушарового электрода *R*.

6. Опасную зону, т.е. радиус круга на поверхности земли с центром полушарового электрода. Радиус опасной зоны определить из условия техники безопасности, принимая шаговое напряжение на границе этой зоны не превышающее 150 В.

Το 6 συνο 7

		Исхо	одные дан	ные					
Номера	Последн шифра с	яя цифра студента	Предпоследняя цифра шифра студ						
вариантов	а, см	<i>I</i> , A	<i>а</i> ₁ , см	<i>а</i> ₂ , см	<i>а</i> ₃ , см	<i>а</i> ₄ , см			
1	20	1000	25	120	500	1000			
2	25	80	30	120	400	800			
3	30	750	35	130	500	1000			
4	25	900	30	120	400	800			
5	30	1100	35	130	500	1000			
6	35	1200	40	130	400	800			
7	30	900	35	200	400	1100			
8	25	1000	30	110	300	800			
9	30	800	35	120	400	1000			
0	30	1000	40	130	400	800			

Численные значения величин, необходимых для решения задачи приведены в табл. 7. Номера вариантов выбираются: по последней цифре шифра студента номер варианта для значений *а*, *I*, а по предпоследней цифре – номер варианта значений a_1, a_2, a_3, a_4 .

Методические указания к задаче № 3

В данной задаче предлагается определить характеристики распределения потенциалов электрического поля на поверхности земли вокруг заземляющего устройства. Такая задача имеет практическое значение в схемах электроснабжения, например, в случае короткого замыкания проводов высокого напряжения на опору.

Ток короткого замыкания, протекая по земле, как по обратному проводу, образует на поверхности земли электрическое поле. В задаче предлагается определить основные характеристики этого электрического поля.

Принимается, что основание опоры мачты представляет собой полушаровой электрод, радиус которого r = a. Поверхность соприкосновения полушарового электрода с землей рав-Ha $S = 2\pi a^2$.

При возможном коротком замыкании ток короткого замыкания I, проходящий через опору, будет отводиться в землю через заземлитель (полушаровой электрод).

Плотность тока δ при этом будет равна отношению величины тока к поверхности полушарового электрода, через которую проходит этот ток, т.е.

$$\delta = \frac{I}{S} = \frac{I}{2 \cdot \pi \cdot a^2} ,$$

где *I* – ток короткого замыкания.

Применяя закон Ома в дифференциальной форме $\delta = \gamma \cdot E$, можно записанное выше уравнение представить в другом виде:

$$\gamma \cdot E = \frac{I}{2 \cdot \pi \cdot a^2}.$$
 (36)

Из этого выражения находится напряженность электрического поля *E* на поверхности земли (и воображаемой полусферы в толще земли) на расстоянии *a* от центра полушарового электрода.

$$E = \frac{\delta}{\gamma} = \frac{I}{2 \cdot \pi \cdot \gamma \cdot a^2} \,. \tag{37}$$

Значение потенциалов ϕ_{κ} в точках на поверхности земли на расстоянии a_{κ} от центра полушарового электрода находится из условия:

$$\varphi_k = \int_{a_k}^{\infty} \vec{E} \cdot \vec{da} \cdot$$
(38)

Подставляя в это выражение значение напряженности электрического поля E, после соответствующих преобразований получим расчетную формулу для определения потенциала в рассматриваемых точках.

$$\varphi_k = \frac{I}{2 \cdot \pi \cdot \gamma \cdot a_k}.$$
(39)

Шаговое напряжение $U_{\rm шк}$ на расстоянии от центра полушарового электрода (абсолютное значение разности потенциалов двух точек на поверхности земли, расстояние которых от центра заземляющего электрода различается на величину шага $\ell_{\rm ш}$) может быть вычислено по формуле

$$U_{\mathrm{III}k} = \frac{I}{2 \cdot \pi \cdot \gamma} \cdot \left[\frac{1}{a_k} - \frac{1}{a_k + l_{\mathrm{III}}} \right]. \tag{40}$$

ИЛИ

$$U_{uk} = \frac{I}{2 \cdot \pi \cdot \gamma} \cdot \frac{l_{u}}{a_{\kappa} \cdot (a_{\kappa} + l_{u})}.$$
(41)

Радиус зоны опасности a_0 можно найти, исходя из того, что шаговое напряжение $U_{\rm mo}$ на границах этой зоны не превышает

допустимого значения шагового напряжения $U_{\text{ш. доп.}}$, а внутри зоны опасности уже больше $U_{\text{ш. доп.}}$, т.е.

$$U_{\rm III0} \ge U_{\rm III. \ don.} \,. \tag{42}$$

В соответствии с условием задачи $U_{\text{III. ДОП.}} = 150 \text{ B}.$

Подставляя в неравенство (42) значение шагового напряжения $U_{\mu\nu}$, получим:

$$\frac{I}{2 \cdot \pi \cdot \gamma} \cdot \left[\frac{1}{a_0} - \frac{1}{a_0 + l_{\text{III}}} \right] \ge U_{\text{III. JOII.}} \quad .$$
(43)

Это выражение после преобразования можно переписать в другом виде:

$$2 \cdot U_{\text{III. JOR.}} \cdot \pi \cdot \gamma \cdot a_0^2 + 2 \cdot U_{\text{III. JOR.}} \cdot \pi \cdot \gamma \cdot l_{\text{III}} \cdot a_0 - I \cdot l_{\text{III}} \le 0.$$
(44)

Отсюда определяется радиус опасной зоны a_0 .

Сопротивление заземления *R* полушарового электрода можно найти по формуле:

$$R = \frac{1}{2 \cdot \pi \cdot \gamma \cdot a}.$$
 (45)

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная

1. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. – М.: Гардарики, 2000.

2. Демирчян К.С., Нейман Л.Р., Коровкин Н.В., Чечурин В.Л. Теоретические основы электротехники. В 3-х т. Учеб. для вузов. Изд. 4-е. перераб. и доп. – СПб.: Питер, 2004.

3. Климентов Н.И. Теоретические основы электротехники. Нелинейные электрические и магнитные цепи постоянного тока. Уч. пос. – М.: РГОТУПС, 2004. – 75 с.

4. Серебряков А.С. Нелинейные электрические и магнитные цепи переменного тока. Конспект лекций. – М.: РГОТУПС, 2002. – 52 с.

5. Серебряков А.С. Электротехника. Магнитные цепи. Конспект лекций. – М.: РГОТУПС, 2000. – 43 с.

Дополнительная

6. Электротехнический справочник. Т.1 / Под общ. ред. П.Г. Грудинского и др. Изд. 5-е, испр. — М.: Энергия, 1974. — 776 с.

7. Турчак Л.И. Основы численных методов // Под ред. В.В. Щеннакова. — М.: Наука. 1987. — 319 с.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Задание на контрольную работу № 3 с методическими указаниями

Редактор *Г.В. Тимченко* Компьютерная верстка *Г.Д. Волкова*

Тип.зак.Изд.зак. 184Тираж 2 000 экз.Подписано в печать 21.03.07Гарнитура NewtonФормат $60 \times 90^{-1}/_{16}$ Усл.печ.л. 1,75Усл. Сормат 60 с

Издательский центр РГОТУПСа, 125993, Москва, Часовая ул., 22/2

Участок оперативной печати РГОТУПСа, 125993, Москва, Часовая ул., 22/2