ЭЛЕКТРОСТАТИКА. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

Задание № 1 (301)

Точечные заряды $Q_1=20$ мкКл, $Q_2=-10$ мкКл находятся на расстоянии d=5 см друг от друга. Определить напряженность поля в точке, удаленной на $r_1=3$ см от первого и на $r_2=4$ см от второго заряда. Определить также силу \vec{F} , действующую в этой точке на точечный заряд Q=1 мкКл.

Задание № 2 (311)

Тонкий стержень длиной l=20 см несет равномерно распределенный заряд Q=0,1 мкКл. Определить напряженность \vec{E} электрического поля, создаваемого распределенным зарядом в точке A, лежащей на оси стержня на расстоянии a=20 см от его конца.

Задание № 3 (321)

Два точечных заряда находятся на расстоянии r = 60 см друг от друга. Какую работу необходимо совершить внешним силам, чтобы уменьшить расстояние между зарядами вдвое?

Задание № 4 (333)

Найти соотношение скоростей ионов Cu++ и K++, прошедших одинаковую разность потенциалов.

Задание № 5 (343)

Конденсаторы емкостями C1 = 2 мкф, C2 = 5 мкф и C3 = 10 мкф соединены последовательно и находятся под напряжением U = 850 В. Определить напряжение и заряд на каждом из конденсаторов.

Задание № 6 (353)

Сколько витков нихромовой проволоки диаметром d = 1 мм надо навить на фарфоровый цилиндр радиусом r = 2.5 см, чтобы получить печь сопротивлением R = 40 Ом.

Задание № 7 (365)

ЭДС батареи $\varepsilon = 24~\mathrm{B}$. Наибольшая сила тока, которую может дать батарея $I = 10~\mathrm{A}$. Определить максимальную мощность, которая может выделиться во внешней цепи

Задание № 8 (375)

На сколько изменится температура медного стержня, если по нему в течение t=0.5 с будет проходить ток, плотность которого j=9 А/мм 2 . Теплопередача окружающим телам отсутствует.

ОПТИКА

Задание № 1 (501)

Разность хода интерферирующих лучей монохроматического света $\Delta = 0.31 \, \lambda$. Определить разность фаз колебаний.

Задание № 2 (511)

Какое наименьшее число N_{min} штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн $l_1 = 589,0$ нм и $l_2 = 589,6$ нм? Какова длина l такой решетки, если постоянная решетки d = 5 мкм?

Задание № 3 (521)

Пластинку кварца толщиной d=2 мм поместили между параллельными поляроидами. В результате чего плоскость поляризации монохроматического света повернулась на угол $\varphi=53^\circ$. Какой наименьшей толщины следует взять пластинку, чтобы поле зрения поляриметра стало совершенно темным ?

Задание № 4 (533)

При какой скорости β (в долях скорости света) релятивистская масса любой частицы вещества в n=3 раза больше массы покоя?

Задание № 5 (543)

Температура абсолютно черного тела T=2 кК. Определить длину волны λ_m , на которую приходится максимум энергии излучения тела.

Задание № 6 (553)

Фотон с энергией E = 10 эВ падает на серебряную пластинку и вызывает фотоэффект. Определить импульс p, полученный пластинкой, если принять, что направления движения фотона и фотоэлектрона лежат на одной прямой, перпендикулярной поверхности пластин.

Задание № 7 (565)

Фотон с длиной волны $\lambda_1=15$ нм рассеялся на свободном электроне. Длина волны рассеянного фотона $\lambda_2=16$ нм. Определить угол θ рассеяния.

Задание № 8 (575)

Энергетическая освещенность зеркальной поверхности равна $E_e=103~{\rm Bt/m^2}.$ Определить силу светового давления на площадь $S=1~{\rm m^2}$ этой поверхности.